Morrey-Type Spaces on Gauss Measure Spaces and Boundedness of Singular Integrals

被引:19
|
作者
Liu, Liguang [2 ]
Sawano, Yoshihiro [3 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] Renmin Univ China, Sch Informat, Dept Math, Beijing 100872, Peoples R China
[3] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 1920397, Japan
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
Locally doubling measure space; Gauss measure space; Morrey space; Campanato space; Riesz transform; Singular integral; MAXIMAL-FUNCTION; BMO; OPERATORS; H-1; EXTENSIONS;
D O I
10.1007/s12220-012-9362-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors introduce Morrey-type spaces on the locally doubling metric measure spaces, which means that the underlying measure enjoys the doubling and the reverse doubling properties only on a class of admissible balls, and then obtain the boundedness of the local Hardy-Littlewood maximal operator and the local fractional integral operator on such Morrey-type spaces. These Morrey-type spaces on the Gauss measure space are further proved to be naturally adapted to singular integrals associated with the Ornstein-Uhlenbeck operator. To be precise, by means of the locally doubling property and the geometric properties of the Gauss measure, the authors establish the equivalence between Morrey-type spaces and Campanato-type spaces on the Gauss measure space, and the boundedness for a class of singular integrals associated with the Ornstein-Uhlenbeck operator (including Riesz transforms of any order) on Morrey-type spaces over the Gauss measure space.
引用
收藏
页码:1007 / 1051
页数:45
相关论文
共 50 条
  • [1] Morrey-Type Spaces on Gauss Measure Spaces and Boundedness of Singular Integrals
    Liguang Liu
    Yoshihiro Sawano
    Dachun Yang
    [J]. The Journal of Geometric Analysis, 2014, 24 : 1007 - 1051
  • [2] On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces
    Burenkov, V. I.
    Guliyev, H. V.
    Guliyev, V. S.
    [J]. INTERACTION OF ANALYSIS AND GEOMETRY, 2007, 424 : 17 - +
  • [3] ON BOUNDEDNESS OF THE HARDY OPERATOR IN MORREY-TYPE SPACES
    Burenkov, V. I.
    Jain, P.
    Tararykova, T. V.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2011, 2 (01): : 52 - 80
  • [4] Boundedness of the Riesz Potential in Local Morrey-Type Spaces
    Victor I. Burenkov
    Amiran Gogatishvili
    Vagif S. Guliyev
    Rza Ch. Mustafayev
    [J]. Potential Analysis, 2011, 35 : 67 - 87
  • [5] Boundedness and Compactness of Multilinear Singular Integrals on Morrey Spaces
    Mei, Ting
    Li, Aobo
    [J]. JOURNAL OF MATHEMATICAL STUDY, 2024, 57 (02) : 164 - 177
  • [6] On the Boundedness of Singular Integrals in Morrey Spaces and its Preduals
    Rosenthal, Marcel
    Schmeisser, Hans-Juergen
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (02) : 462 - 490
  • [7] On the Boundedness of Singular Integrals in Morrey Spaces and its Preduals
    Marcel Rosenthal
    Hans-Jürgen Schmeisser
    [J]. Journal of Fourier Analysis and Applications, 2016, 22 : 462 - 490
  • [8] Boundedness of the Riesz Potential in Local Morrey-Type Spaces
    Burenkov, Victor I.
    Gogatishvili, Amiran
    Guliyev, Vagif S.
    Mustafayev, Rza Ch
    [J]. POTENTIAL ANALYSIS, 2011, 35 (01) : 67 - 87
  • [9] ON THE BOUNDEDNESS OF THE ANISOTROPIC FRACTIONAL MAXIMAL OPERATOR FROM ANISOTROPIC COMPLEMENTARY MORREY-TYPE SPACES TO ANISOTROPIC MORREY-TYPE SPACES
    Akbulut, A.
    Guliyev, V. S.
    Muradova, Sh. A.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2013, 4 (01): : 7 - 20
  • [10] Singular Integrals and Hardy Type Spaces for the Inverse Gauss Measure
    Tommaso Bruno
    [J]. The Journal of Geometric Analysis, 2021, 31 : 6481 - 6528