Morrey-Type Spaces on Gauss Measure Spaces and Boundedness of Singular Integrals

被引:19
|
作者
Liu, Liguang [2 ]
Sawano, Yoshihiro [3 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] Renmin Univ China, Sch Informat, Dept Math, Beijing 100872, Peoples R China
[3] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 1920397, Japan
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
Locally doubling measure space; Gauss measure space; Morrey space; Campanato space; Riesz transform; Singular integral; MAXIMAL-FUNCTION; BMO; OPERATORS; H-1; EXTENSIONS;
D O I
10.1007/s12220-012-9362-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors introduce Morrey-type spaces on the locally doubling metric measure spaces, which means that the underlying measure enjoys the doubling and the reverse doubling properties only on a class of admissible balls, and then obtain the boundedness of the local Hardy-Littlewood maximal operator and the local fractional integral operator on such Morrey-type spaces. These Morrey-type spaces on the Gauss measure space are further proved to be naturally adapted to singular integrals associated with the Ornstein-Uhlenbeck operator. To be precise, by means of the locally doubling property and the geometric properties of the Gauss measure, the authors establish the equivalence between Morrey-type spaces and Campanato-type spaces on the Gauss measure space, and the boundedness for a class of singular integrals associated with the Ornstein-Uhlenbeck operator (including Riesz transforms of any order) on Morrey-type spaces over the Gauss measure space.
引用
收藏
页码:1007 / 1051
页数:45
相关论文
共 50 条
  • [21] Dual spaces of local Morrey-type spaces
    Amiran Gogatishvili
    Rza Mustafayev
    [J]. Czechoslovak Mathematical Journal, 2011, 61 : 609 - 622
  • [22] DUAL SPACES OF LOCAL MORREY-TYPE SPACES
    Gogatishvili, Amiran
    Mustafayev, Rza
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2011, 61 (03) : 609 - 622
  • [23] Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents
    Wang, Hongbin
    Xu, Jingshi
    Tan, Jian
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (05) : 1011 - 1034
  • [24] Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents
    Hongbin Wang
    Jingshi Xu
    Jian Tan
    [J]. Frontiers of Mathematics in China, 2020, 15 : 1011 - 1034
  • [25] NECESSARY AND SUFFICIENT CONDITIONS FOR THE BOUNDEDNESS OF THE MAXIMAL OPERATOR FROM LEBESGUE SPACES TO MORREY-TYPE SPACES
    Burenkov, V. I.
    Goldman, M. L.
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02): : 401 - 418
  • [26] On the Commutator of Marcinkiewicz Integrals with Rough Kernels in Variable Morrey-Type Spaces
    M. Qu
    L. Wang
    [J]. Ukrainian Mathematical Journal, 2020, 72 : 1080 - 1099
  • [27] COMPLEX INTERPOLATION FOR PREDUAL SPACES OF MORREY-TYPE SPACES
    Yuan, Wen
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (05): : 1527 - 1548
  • [28] On the Commutator of Marcinkiewicz Integrals with Rough Kernels in Variable Morrey-Type Spaces
    Qu, M.
    Wang, L.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (07) : 1080 - 1099
  • [29] Description of interpolation spaces for local Morrey-type spaces
    V. I. Burenkov
    E. D. Nursultanov
    [J]. Proceedings of the Steklov Institute of Mathematics, 2010, 269 : 46 - 56
  • [30] Description of Interpolation Spaces for Local Morrey-Type Spaces
    Burenkov, V. I.
    Nursultanov, E. D.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 269 (01) : 46 - 56