Morrey-Type Spaces on Gauss Measure Spaces and Boundedness of Singular Integrals

被引:19
|
作者
Liu, Liguang [2 ]
Sawano, Yoshihiro [3 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] Renmin Univ China, Sch Informat, Dept Math, Beijing 100872, Peoples R China
[3] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 1920397, Japan
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
Locally doubling measure space; Gauss measure space; Morrey space; Campanato space; Riesz transform; Singular integral; MAXIMAL-FUNCTION; BMO; OPERATORS; H-1; EXTENSIONS;
D O I
10.1007/s12220-012-9362-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors introduce Morrey-type spaces on the locally doubling metric measure spaces, which means that the underlying measure enjoys the doubling and the reverse doubling properties only on a class of admissible balls, and then obtain the boundedness of the local Hardy-Littlewood maximal operator and the local fractional integral operator on such Morrey-type spaces. These Morrey-type spaces on the Gauss measure space are further proved to be naturally adapted to singular integrals associated with the Ornstein-Uhlenbeck operator. To be precise, by means of the locally doubling property and the geometric properties of the Gauss measure, the authors establish the equivalence between Morrey-type spaces and Campanato-type spaces on the Gauss measure space, and the boundedness for a class of singular integrals associated with the Ornstein-Uhlenbeck operator (including Riesz transforms of any order) on Morrey-type spaces over the Gauss measure space.
引用
收藏
页码:1007 / 1051
页数:45
相关论文
共 50 条
  • [31] The boundedness of fractional integral operators in local and global mixed Morrey-type spaces
    Zhang, Houkun
    Zhou, Jiang
    [J]. POSITIVITY, 2022, 26 (01)
  • [32] BOUNDEDNESS OF THE ANISOTROPIC FRACTIONAL MAXIMAL OPERATOR IN ANISOTROPIC LOCAL MORREY-TYPE SPACES
    Akbulut, A.
    Ekincioglu, I.
    Serbetci, A.
    Tararykova, T.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2011, 2 (02): : 5 - 30
  • [33] Decompositions of local Morrey-type spaces
    Guliyev, Vagif S.
    Hasanov, Sabir G.
    Sawano, Yoshihiro
    [J]. POSITIVITY, 2017, 21 (03) : 1223 - 1252
  • [34] Hausdorff operators on Morrey-type spaces
    Burenkov, V
    Liflyand, E.
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2020, 60 (01) : 93 - 106
  • [35] Criterion of the boundedness of singular integrals on spaces of homogeneous type
    Han, Yanchang
    Han, Yongsheng
    Li, Ji
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (12) : 3423 - 3464
  • [36] Necessary and sufficient conditions for the boundedness of the maximal operator in local Morrey-type spaces
    Burenkov, VI
    Guliev, GV
    [J]. DOKLADY MATHEMATICS, 2003, 68 (01) : 107 - 110
  • [37] Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces
    Victor I. Burenkov
    Vagif S. Guliyev
    [J]. Potential Analysis, 2009, 30
  • [38] The boundedness of fractional integral operators in local and global mixed Morrey-type spaces
    Houkun Zhang
    Jiang Zhou
    [J]. Positivity, 2022, 26
  • [39] Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces
    Burenkov, VI
    Guliyev, HV
    [J]. STUDIA MATHEMATICA, 2004, 163 (02) : 157 - 176
  • [40] Precompact Sets, Boundedness, and Compactness of Commutators for Singular Integrals in Variable Morrey Spaces
    Wang, Wei
    Xu, Jingshi
    [J]. JOURNAL OF FUNCTION SPACES, 2017, 2017