The boundedness of fractional integral operators in local and global mixed Morrey-type spaces

被引:8
|
作者
Zhang, Houkun [1 ]
Zhou, Jiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
关键词
Local and global mixed Morrey-type spaces; Fractional integral operators; Hardy operators; SUFFICIENT CONDITIONS; MAXIMAL OPERATOR; EMBEDDINGS;
D O I
10.1007/s11117-022-00886-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the local and global mixed Morrey-type spaces and show some properties. Besides, we investigate the boundedness of the fractional integral operators Ia in these spaces. Firstly, we investigate sufficient and necessary conditions in mixed-norm Lebesgue spaces and necessary conditions for boundedness in the local mixed Morrey-type spaces. Then, we prove the boundedness of I-alpha by Hardy operators' boundedness in weighted Lebesgue spaces. Furthermore, we obtain the boundedness of I-alpha in global mixed Morrey-type spaces and some corollaries.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] The boundedness of fractional integral operators in local and global mixed Morrey-type spaces
    Houkun Zhang
    Jiang Zhou
    [J]. Positivity, 2022, 26
  • [2] On the Boundedness of Integral Operators in Morrey-Type Spaces with Variable Exponents
    Bokayev N.A.
    Onerbek Z.M.
    [J]. Siberian Advances in Mathematics, 2022, 32 (2) : 79 - 86
  • [3] Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces
    Burenkov, Viktor I.
    Guliyev, Huseyn V.
    Guliyev, Vagif S.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 208 (01) : 280 - 301
  • [4] Boundedness of the fractional maximal operator in local Morrey-type spaces
    Burenkov, V. I.
    Gogatishvili, A.
    Guliyev, V. S.
    Mustafayev, R. Ch.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) : 739 - 758
  • [5] Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces
    V. I. Burenkov
    V. S. Guliev
    T. V. Tararykova
    A. Serbetci
    [J]. Doklady Mathematics, 2008, 78
  • [6] Boundedness of commutators of fractional integral operators on mixed Morrey spaces
    Nogayama, Toru
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2019, 30 (10) : 790 - 816
  • [7] NECESSARY AND SUFFICIENT CONDITIONS FOR THE BOUNDEDNESS OF GENUINE SINGULAR INTEGRAL OPERATORS IN LOCAL MORREY-TYPE SPACES
    Burenkov, V. I.
    Guliyev, V. S.
    Serbetci, A.
    Tararykova, T. V.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2010, 1 (01): : 32 - 53
  • [8] Necessary and Sufficient Conditions for the Boundedness of Genuine Singular Integral Operators in Local Morrey-Type Spaces
    Burenkov, V. I.
    Guliev, V. S.
    Tararykova, T. V.
    Serbetci, A.
    [J]. DOKLADY MATHEMATICS, 2008, 78 (02) : 651 - 654
  • [9] On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces
    Burenkov, V. I.
    Guliyev, H. V.
    Guliyev, V. S.
    [J]. INTERACTION OF ANALYSIS AND GEOMETRY, 2007, 424 : 17 - +
  • [10] Some estimates of operators on Local mixed Morrey-type spaces
    Shi, Mingwei
    Zhou, Jiang
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,