ON THE BOUNDEDNESS OF THE ANISOTROPIC FRACTIONAL MAXIMAL OPERATOR FROM ANISOTROPIC COMPLEMENTARY MORREY-TYPE SPACES TO ANISOTROPIC MORREY-TYPE SPACES

被引:0
|
作者
Akbulut, A. [1 ]
Guliyev, V. S. [1 ,2 ]
Muradova, Sh. A. [2 ]
机构
[1] Ahi Evran Univ, Dept Math, TR-40100 Kirsehir, Turkey
[2] Azerbaijan Acad Sci, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
来源
EURASIAN MATHEMATICAL JOURNAL | 2013年 / 4卷 / 01期
关键词
anisotropic fractional maximal operator; anisotropic local Morrey-type spaces; anisotropic complementary Morrey-type spaces; dual Hardy operator;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of the boundedness of the anisotropic fractional maximal operator Md-alpha(d) from anisotropic complementary Morrey-typespaces to anisotropic Morrey-type spaces is reduced to the problem of boundedness of the dual Hardy operator in weighted Lp-spaces on the cone of non-negative non-increasing functions, which allows obtaining sharp sufficient conditions for the boundedness of Md-alpha(d).
引用
收藏
页码:7 / 20
页数:14
相关论文
共 50 条
  • [1] BOUNDEDNESS OF THE ANISOTROPIC FRACTIONAL MAXIMAL OPERATOR IN ANISOTROPIC LOCAL MORREY-TYPE SPACES
    Akbulut, A.
    Ekincioglu, I.
    Serbetci, A.
    Tararykova, T.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2011, 2 (02): : 5 - 30
  • [2] On boundedness of the fractional maximal operator from complementary Morrey-type spaces to Morrey-type spaces
    Burenkov, V. I.
    Guliyev, H. V.
    Guliyev, V. S.
    [J]. INTERACTION OF ANALYSIS AND GEOMETRY, 2007, 424 : 17 - +
  • [3] Boundedness of the anisotropic Riesz potential in anisotropic local Morrey-type spaces
    Akbulut, A.
    Guliyev, V. S.
    Muradova, Sh. A.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (02) : 259 - 280
  • [4] Boundedness of the fractional maximal operator in local Morrey-type spaces
    Burenkov, V. I.
    Gogatishvili, A.
    Guliyev, V. S.
    Mustafayev, R. Ch.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) : 739 - 758
  • [5] ON BOUNDEDNESS OF THE HARDY OPERATOR IN MORREY-TYPE SPACES
    Burenkov, V. I.
    Jain, P.
    Tararykova, T. V.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2011, 2 (01): : 52 - 80
  • [6] Necessary and sufficient conditions for the boundedness of the fractional maximal operator in local Morrey-type spaces
    Burenkov, V. I.
    Guliev, V. S.
    Guliev, G. V.
    [J]. DOKLADY MATHEMATICS, 2006, 74 (01) : 540 - 544
  • [7] Necessary and sufficient conditions for the boundedness of the fractional maximal operator in local Morrey-type spaces
    V. I. Burenkov
    V. S. Guliev
    G. V. Guliev
    [J]. Doklady Mathematics, 2006, 74 : 540 - 544
  • [8] NECESSARY AND SUFFICIENT CONDITIONS FOR THE BOUNDEDNESS OF THE MAXIMAL OPERATOR FROM LEBESGUE SPACES TO MORREY-TYPE SPACES
    Burenkov, V. I.
    Goldman, M. L.
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02): : 401 - 418
  • [9] Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces
    Burenkov, VI
    Guliyev, HV
    [J]. STUDIA MATHEMATICA, 2004, 163 (02) : 157 - 176
  • [10] On convolution operator in Morrey-type spaces
    Nursultanov, Ye. D.
    Darbayeva, D. K.
    [J]. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2013, 71 (03): : 72 - 79