Boundedness of the anisotropic Riesz potential in anisotropic local Morrey-type spaces

被引:6
|
作者
Akbulut, A. [1 ]
Guliyev, V. S. [1 ,2 ]
Muradova, Sh. A. [2 ]
机构
[1] Ahi Evran Univ, Dept Math, TR-40200 Kirsehir, Turkey
[2] Inst Math & Mech, Dept Math Anal, AZ-1145 Baku, Azerbaijan
关键词
anisotropic Riesz potential; anisotropic local and global Morrey-type spaces; Hardy operator on the cone of monotonic functions; Primary; 42B20; 42B25; 42B35; SUFFICIENT CONDITIONS; MAXIMAL OPERATOR; SINGULAR-INTEGRALS; EMBEDDINGS;
D O I
10.1080/17476933.2011.575465
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of boundedness of the anisotropic Riesz potential in local Morrey-type spaces is reduced to the problem of boundedness of the Hardy operator in weighted L p -spaces on the cone of non-negative non-increasing functions. This allows obtaining sharp sufficient conditions for boundedness for all admissible values of the parameters, which, for a certain range of the parameters wider than known before, coincide with the necessary ones.
引用
收藏
页码:259 / 280
页数:22
相关论文
共 50 条
  • [1] Boundedness of the Riesz Potential in Local Morrey-Type Spaces
    Victor I. Burenkov
    Amiran Gogatishvili
    Vagif S. Guliyev
    Rza Ch. Mustafayev
    [J]. Potential Analysis, 2011, 35 : 67 - 87
  • [2] Boundedness of the Riesz Potential in Local Morrey-Type Spaces
    Burenkov, Victor I.
    Gogatishvili, Amiran
    Guliyev, Vagif S.
    Mustafayev, Rza Ch
    [J]. POTENTIAL ANALYSIS, 2011, 35 (01) : 67 - 87
  • [3] BOUNDEDNESS OF THE ANISOTROPIC FRACTIONAL MAXIMAL OPERATOR IN ANISOTROPIC LOCAL MORREY-TYPE SPACES
    Akbulut, A.
    Ekincioglu, I.
    Serbetci, A.
    Tararykova, T.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2011, 2 (02): : 5 - 30
  • [4] ON BOUNDEDNESS OF THE GENERALIZED RIESZ POTENTIAL IN LOCAL MORREY-TYPE SPACES
    Burenkov V.I.
    Senouci M.A.
    [J]. Journal of Mathematical Sciences, 2022, 266 (5) : 765 - 793
  • [5] ON THE BOUNDEDNESS OF THE ANISOTROPIC FRACTIONAL MAXIMAL OPERATOR FROM ANISOTROPIC COMPLEMENTARY MORREY-TYPE SPACES TO ANISOTROPIC MORREY-TYPE SPACES
    Akbulut, A.
    Guliyev, V. S.
    Muradova, Sh. A.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2013, 4 (01): : 7 - 20
  • [6] Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces
    Victor I. Burenkov
    Vagif S. Guliyev
    [J]. Potential Analysis, 2009, 30
  • [7] Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces
    Burenkov, V. I.
    Guliev, V. S.
    Guliev, G. V.
    [J]. DOKLADY MATHEMATICS, 2007, 75 (01) : 103 - 107
  • [8] Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces
    V. I. Burenkov
    V. S. Guliev
    G. V. Guliev
    [J]. Doklady Mathematics, 2007, 75 : 103 - 107
  • [9] Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces
    Burenkov, Victor I.
    Guliyev, Vagif S.
    [J]. POTENTIAL ANALYSIS, 2009, 30 (03) : 211 - 249
  • [10] Necessary and sufficient conditions for the boundedness of the anisotropic Riesz potential in anisotropic modified Morrey spaces
    Dzhabrailov, Malik S.
    Khaligova, Sevinc Z.
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2013, 21 (02): : 111 - 130