Boundedness of the Riesz Potential in Local Morrey-Type Spaces

被引:0
|
作者
Victor I. Burenkov
Amiran Gogatishvili
Vagif S. Guliyev
Rza Ch. Mustafayev
机构
[1] Padova University,Dipartimento di matematica pura ed applicata
[2] Institute of Mathematics of the Academy of Sciences of the Czech Republic,Department of Mathematics
[3] Ahi Evran University,Institute of Mathematics and Mechanics
[4] Academy of Sciences of Azerbaijan,undefined
来源
Potential Analysis | 2011年 / 35卷
关键词
Riesz potential; Local and global Morrey-type spaces; Hardy operator on the cone of monotonic functions; Primary 42B20; 42B25; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of boundedness of the Riesz potential in local Morrey-type spaces is reduced to the problem of boundedness of the Hardy operator in weighted Lp-spaces on the cone of non-negative non-increasing functions. This allows obtaining sharp sufficient conditions for boundedness for all admissible values of the parameters, which, for a certain range of the parameters wider than known before, coincide with the necessary ones.
引用
收藏
页码:67 / 87
页数:20
相关论文
共 50 条
  • [1] Boundedness of the Riesz Potential in Local Morrey-Type Spaces
    Burenkov, Victor I.
    Gogatishvili, Amiran
    Guliyev, Vagif S.
    Mustafayev, Rza Ch
    [J]. POTENTIAL ANALYSIS, 2011, 35 (01) : 67 - 87
  • [2] ON BOUNDEDNESS OF THE GENERALIZED RIESZ POTENTIAL IN LOCAL MORREY-TYPE SPACES
    Burenkov V.I.
    Senouci M.A.
    [J]. Journal of Mathematical Sciences, 2022, 266 (5) : 765 - 793
  • [3] Boundedness of the anisotropic Riesz potential in anisotropic local Morrey-type spaces
    Akbulut, A.
    Guliyev, V. S.
    Muradova, Sh. A.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (02) : 259 - 280
  • [4] Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces
    Victor I. Burenkov
    Vagif S. Guliyev
    [J]. Potential Analysis, 2009, 30
  • [5] Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces
    Burenkov, V. I.
    Guliev, V. S.
    Guliev, G. V.
    [J]. DOKLADY MATHEMATICS, 2007, 75 (01) : 103 - 107
  • [6] Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces
    V. I. Burenkov
    V. S. Guliev
    G. V. Guliev
    [J]. Doklady Mathematics, 2007, 75 : 103 - 107
  • [7] Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces
    Burenkov, Victor I.
    Guliyev, Vagif S.
    [J]. POTENTIAL ANALYSIS, 2009, 30 (03) : 211 - 249
  • [8] Compactness of Commutators for Riesz Potential on Local Morrey-type spaces.
    Matin, D. T.
    Akhazhanov, T. B.
    Adilkhanov, A.
    [J]. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2023, 110 (02): : 93 - 103
  • [9] BOUNDEDNESS OF THE GENERALIZED RIESZ POTENTIAL IN LOCAL MORREY TYPE SPACES
    Burenkov, V., I
    Senouci, M. A.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (04):
  • [10] Boundedness of the fractional maximal operator in local Morrey-type spaces
    Burenkov, V. I.
    Gogatishvili, A.
    Guliyev, V. S.
    Mustafayev, R. Ch.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) : 739 - 758