Compactness of Commutators for Riesz Potential on Local Morrey-type spaces.

被引:1
|
作者
Matin, D. T. [1 ]
Akhazhanov, T. B. [1 ]
Adilkhanov, A. [1 ]
机构
[1] LN Gumilyov Eurasian Natl Univ, Astana, Kazakhstan
来源
关键词
Compactness; Commutators; Riesz Potential; Local Morrey-type spaces; CLASSICAL OPERATORS; RECENT PROGRESS; REAL ANALYSIS; BOUNDEDNESS;
D O I
10.31489/2023M2/93-103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper considers Morrey-type local spaces from LMwp & theta; The main work is the proof of the commutator compactness theorem for the Riesz potential [b, I & alpha;] in local Morrey-type spaces from LMp & theta;w1 to LMw2 q & theta; . We also give new sufficient conditions for the commutator to be bounded for the Riesz potential [b, I & alpha;] in local Morrey-type spaces from LMp & theta;w1 to LMw2 q & theta; . In the proof of the commutator compactness theorem for the Riesz potential, we essentially use the boundedness condition for the commutator for the Riesz potential [b, I & alpha;] in local Morrey-type spaces LMwp & theta;, and use the sufficient conditions from the theorem of precompactness of sets in local spaces of Morrey type LMwp & theta;. In the course of proving the commutator compactness theorem for the Riesz potential, we prove lemmas for the commutator ball for the Riesz potential [b, I & alpha;]. Similar results were obtained for global Morrey-type spaces GMwp & theta; and for generalized Morrey spaces Mpw.
引用
收藏
页码:93 / 103
页数:11
相关论文
共 50 条
  • [1] Compactness of Commutators of Riesz Potential on Morrey Spaces
    Yanping Chen
    Yong Ding
    Xinxia Wang
    Potential Analysis, 2009, 30 : 301 - 313
  • [2] A Sufficient Condition for Compactness of the Commutators of Riesz Potential on Global Morrey-Type Space
    Bokayev, Nurzhan
    Matin, Dauren
    Baituyakova, Zhuldyz
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2018), 2018, 1997
  • [3] Compactness of Commutators of Riesz Potential on Morrey Spaces
    Chen, Yanping
    Ding, Yong
    Wang, Xinxia
    POTENTIAL ANALYSIS, 2009, 30 (04) : 301 - 313
  • [4] Boundedness of the Riesz Potential in Local Morrey-Type Spaces
    Victor I. Burenkov
    Amiran Gogatishvili
    Vagif S. Guliyev
    Rza Ch. Mustafayev
    Potential Analysis, 2011, 35 : 67 - 87
  • [5] Boundedness of the Riesz Potential in Local Morrey-Type Spaces
    Burenkov, Victor I.
    Gogatishvili, Amiran
    Guliyev, Vagif S.
    Mustafayev, Rza Ch
    POTENTIAL ANALYSIS, 2011, 35 (01) : 67 - 87
  • [6] Compactness of Commutators for Riesz Potential on Generalized Morrey Spaces
    Bokayev, Nurzhan
    Matin, Dauren
    Akhazhanov, Talgat
    Adilkhanov, Aidos
    MATHEMATICS, 2024, 12 (02)
  • [7] ON BOUNDEDNESS OF THE GENERALIZED RIESZ POTENTIAL IN LOCAL MORREY-TYPE SPACES
    Burenkov V.I.
    Senouci M.A.
    Journal of Mathematical Sciences, 2022, 266 (5) : 765 - 793
  • [8] Boundedness of the anisotropic Riesz potential in anisotropic local Morrey-type spaces
    Akbulut, A.
    Guliyev, V. S.
    Muradova, Sh. A.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (02) : 259 - 280
  • [9] Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces
    Burenkov, Victor I.
    Guliyev, Vagif S.
    POTENTIAL ANALYSIS, 2009, 30 (03) : 211 - 249
  • [10] Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces
    Victor I. Burenkov
    Vagif S. Guliyev
    Potential Analysis, 2009, 30