Boundedness of the Riesz Potential in Local Morrey-Type Spaces

被引:0
|
作者
Victor I. Burenkov
Amiran Gogatishvili
Vagif S. Guliyev
Rza Ch. Mustafayev
机构
[1] Padova University,Dipartimento di matematica pura ed applicata
[2] Institute of Mathematics of the Academy of Sciences of the Czech Republic,Department of Mathematics
[3] Ahi Evran University,Institute of Mathematics and Mechanics
[4] Academy of Sciences of Azerbaijan,undefined
来源
Potential Analysis | 2011年 / 35卷
关键词
Riesz potential; Local and global Morrey-type spaces; Hardy operator on the cone of monotonic functions; Primary 42B20; 42B25; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of boundedness of the Riesz potential in local Morrey-type spaces is reduced to the problem of boundedness of the Hardy operator in weighted Lp-spaces on the cone of non-negative non-increasing functions. This allows obtaining sharp sufficient conditions for boundedness for all admissible values of the parameters, which, for a certain range of the parameters wider than known before, coincide with the necessary ones.
引用
收藏
页码:67 / 87
页数:20
相关论文
共 50 条
  • [21] Dual spaces of local Morrey-type spaces
    Amiran Gogatishvili
    Rza Mustafayev
    Czechoslovak Mathematical Journal, 2011, 61 : 609 - 622
  • [22] Decompositions of local Morrey-type spaces
    Vagif S. Guliyev
    Sabir G. Hasanov
    Yoshihiro Sawano
    Positivity, 2017, 21 : 1223 - 1252
  • [23] ON THE BOUNDEDNESS OF THE ANISOTROPIC FRACTIONAL MAXIMAL OPERATOR FROM ANISOTROPIC COMPLEMENTARY MORREY-TYPE SPACES TO ANISOTROPIC MORREY-TYPE SPACES
    Akbulut, A.
    Guliyev, V. S.
    Muradova, Sh. A.
    EURASIAN MATHEMATICAL JOURNAL, 2013, 4 (01): : 7 - 20
  • [24] Boundedness of the Riesz potential in central Morrey–Orlicz spaces
    Evgeniya Burtseva
    Lech Maligranda
    Katsuo Matsuoka
    Positivity, 2022, 26
  • [25] Morrey-Type Spaces on Gauss Measure Spaces and Boundedness of Singular Integrals
    Liu, Liguang
    Sawano, Yoshihiro
    Yang, Dachun
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (02) : 1007 - 1051
  • [26] Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces
    Burenkov, Viktor I.
    Guliyev, Huseyn V.
    Guliyev, Vagif S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 208 (01) : 280 - 301
  • [27] Morrey-Type Spaces on Gauss Measure Spaces and Boundedness of Singular Integrals
    Liguang Liu
    Yoshihiro Sawano
    Dachun Yang
    The Journal of Geometric Analysis, 2014, 24 : 1007 - 1051
  • [28] Necessary and sufficient conditions for the boundedness of the fractional maximal operator in local Morrey-type spaces
    V. I. Burenkov
    V. S. Guliev
    G. V. Guliev
    Doklady Mathematics, 2006, 74 : 540 - 544
  • [29] Necessary and sufficient conditions for the boundedness of the fractional maximal operator in local Morrey-type spaces
    Burenkov, V. I.
    Guliev, V. S.
    Guliev, G. V.
    DOKLADY MATHEMATICS, 2006, 74 (01) : 540 - 544
  • [30] Boundedness of operators arising from Schwarz BVP in modified local Morrey-type spaces
    Guliyev, V. S.
    Koca, K.
    Mustafayev, R. C. H.
    Unver, T.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (10) : 1541 - 1557