Approximate Bayesian logistic regression via penalized likelihood by data augmentation

被引:36
|
作者
Discacciati, Andrea [1 ,2 ]
Orsini, Nicola [1 ,2 ,4 ]
Greenland, Sander [3 ]
机构
[1] Karolinska Inst, Inst Environm Med, Unit Biostat, S-10401 Stockholm, Sweden
[2] Karolinska Inst, Inst Environm Med, Unit Nutr Epidemiol, S-10401 Stockholm, Sweden
[3] Univ Calif Los Angeles, Dept Epidemiol, Los Angeles, CA USA
[4] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA USA
来源
Stata Journal | 2015年 / 15卷 / 03期
关键词
st0400; penlogit; penalized likelihood estimation; data augmentation; Bayesian methods; logistic models; EPIDEMIOLOGIC RESEARCH; PROFILE LIKELIHOOD; MAXIMUM-LIKELIHOOD; VARIABLE SELECTION; PRIORS; DISTRIBUTIONS; PERSPECTIVES;
D O I
10.1177/1536867X1501500306
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
We present a command, penlogit, for approximate Bayesian logistic regression using penalized likelihood estimation via data augmentation. This command automatically adds specific prior-data records to a dataset. These records are computed so that they generate a penalty function for the log likelihood of a logistic model, which equals (up to an additive constant) a set of independent log prior distributions on the model parameters. This command overcomes the necessity of relying on specialiZed software and statistical tools (such as Markov chain Monte Carlo) for fitting Bayesian models, and allows one to assess the information content of a prior in terms of the data that would be required to generate the prior as a likelihood function. The command produces data equivalent to normal and generalized log-F priors for the model parameters, providing flexible translation of background information into prior data, which allows calculation of approximate posterior medians and intervals from ordinary maximum likelihood programs. We illustrate the command through an example using data from an observational study of neonatal mortality.
引用
收藏
页码:712 / 736
页数:25
相关论文
共 50 条
  • [31] Variable selection via penalized minimum φ-divergence estimation in logistic regression
    Sakate, D. M.
    Kashid, D. N.
    JOURNAL OF APPLIED STATISTICS, 2014, 41 (06) : 1233 - 1246
  • [32] Fast speaker adaption via maximum penalized likelihood kernel regression
    Tsang, Ivor W.
    Kwok, James T.
    Mak, Brian
    Zhang, Kai
    Pan, Jeffrey J.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 997 - 1000
  • [33] High-Dimensional Censored Regression via the Penalized Tobit Likelihood
    Jacobson, Tate
    Zou, Hui
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (01) : 286 - 297
  • [34] Bayesian analysis of dynamic panel data by penalized quantile regression
    Ali Aghamohammadi
    Statistical Methods & Applications, 2018, 27 : 91 - 108
  • [35] Approximate Bayesian Quantile Regression for Panel Data
    Pulcini, Antonio
    Liseo, Brunero
    ADVANCES IN COMPLEX DATA MODELING AND COMPUTATIONAL METHODS IN STATISTICS, 2015, : 173 - 189
  • [36] Multiclass-penalized logistic regression
    Nibbering, Didier
    Hastie, Trevor J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 169
  • [37] Bayesian analysis of dynamic panel data by penalized quantile regression
    Aghamohammadi, Ali
    STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (01): : 91 - 108
  • [38] Penalized wavelet nonparametric univariate logistic regression for irregular spaced data
    Amato, Umberto
    Antoniadis, Anestis
    De Feis, Italia
    Gijbels, Irene
    STATISTICS, 2023, 57 (05) : 1037 - 1060
  • [39] Support vector regression with penalized likelihood
    Uemoto, Takumi
    Naito, Kanta
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 174
  • [40] Penalized wavelet nonparametric univariate logistic regression for irregular spaced data
    Amato, Umberto
    Antoniadis, Anestis
    De Feis, Italia
    Gijbels, Irene
    STATISTICS, 2023,