Variable selection via penalized minimum φ-divergence estimation in logistic regression

被引:4
|
作者
Sakate, D. M. [1 ]
Kashid, D. N. [1 ]
机构
[1] Shivaji Univ, Dept Stat, Kolhapur, Maharashtra, India
关键词
logistic regression; variable selection; SCAD; phi-divergence; penalized MLE; CLIPPED ABSOLUTE DEVIATION; LIKELIHOOD ESTIMATION; ALGORITHM; MODELS;
D O I
10.1080/02664763.2013.864262
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose penalized minimum phi-divergence estimator for parameter estimation and variable selection in logistic regression. Using an appropriate penalty function, we show that penalized phi-divergence estimator has oracle property. With probability tending to 1, penalized phi-divergence estimator identifies the true model and estimates nonzero coefficients as efficiently as if the sparsity of the true model was known in advance. The advantage of penalized phi-divergence estimator is that it produces estimates of nonzero parameters efficiently than penalized maximum likelihood estimator when sample size is small and is equivalent to it for large one. Numerical simulations confirm our findings.
引用
收藏
页码:1233 / 1246
页数:14
相关论文
共 50 条
  • [1] Model Selection Via Penalized Logistic Regression
    Ayers, Kristin L.
    Cordell, Heather J.
    [J]. GENETIC EPIDEMIOLOGY, 2009, 33 (08) : 770 - 770
  • [2] FULLY EFFICIENT ROBUST ESTIMATION, OUTLIER DETECTION AND VARIABLE SELECTION VIA PENALIZED REGRESSION
    Kong, Dehan
    Bondell, Howard D.
    Wu, Yichao
    [J]. STATISTICA SINICA, 2018, 28 (02) : 1031 - 1052
  • [3] Robust Minimum Divergence Estimation for the Multinomial Circular Logistic Regression Model
    Castilla, Elena
    Ghosh, Abhik
    [J]. ENTROPY, 2023, 25 (10)
  • [4] Variable selection in spatial regression via penalized least squares
    Wang, Haonan
    Zhu, Jun
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (04): : 607 - 624
  • [5] On Estimation and Selection of Autologistic Regression Models via Penalized Pseudolikelihood
    Rao Fu
    Andrew L. Thurman
    Tingjin Chu
    Michelle M. Steen-Adams
    Jun Zhu
    [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2013, 18 : 429 - 449
  • [6] On Estimation and Selection of Autologistic Regression Models via Penalized Pseudolikelihood
    Fu, Rao
    Thurman, Andrew L.
    Chu, Tingjin
    Steen-Adams, Michelle M.
    Zhu, Jun
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2013, 18 (03) : 429 - 449
  • [7] Estimation and variable selection via frailty models with penalized likelihood
    Androulakis, E.
    Koukouvinos, C.
    Vonta, F.
    [J]. STATISTICS IN MEDICINE, 2012, 31 (20) : 2223 - 2239
  • [8] Minimum Φ-divergence estimator in logistic regression models
    Julio Angel Pardo
    Leandro Pardo
    María del Carmen Pardo
    [J]. Statistical Papers, 2006, 47 : 91 - 108
  • [9] Minimum φ-divergence estimator in logistic regression models
    Pardo, JA
    Pardo, L
    Pardo, MD
    [J]. STATISTICAL PAPERS, 2006, 47 (01) : 91 - 108
  • [10] Minimum Penalized φ-Divergence Estimation under Model Misspecification
    Virtudes Alba-Fernandez, M.
    Dolores Jimenez-Gamero, M.
    Javier Ariza-Lopez, F.
    [J]. ENTROPY, 2018, 20 (05)