Approximate Bayesian logistic regression via penalized likelihood by data augmentation
被引:36
|
作者:
Discacciati, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Karolinska Inst, Inst Environm Med, Unit Biostat, S-10401 Stockholm, Sweden
Karolinska Inst, Inst Environm Med, Unit Nutr Epidemiol, S-10401 Stockholm, SwedenKarolinska Inst, Inst Environm Med, Unit Biostat, S-10401 Stockholm, Sweden
Discacciati, Andrea
[1
,2
]
Orsini, Nicola
论文数: 0引用数: 0
h-index: 0
机构:
Karolinska Inst, Inst Environm Med, Unit Biostat, S-10401 Stockholm, Sweden
Karolinska Inst, Inst Environm Med, Unit Nutr Epidemiol, S-10401 Stockholm, Sweden
Univ Calif Los Angeles, Dept Stat, Los Angeles, CA USAKarolinska Inst, Inst Environm Med, Unit Biostat, S-10401 Stockholm, Sweden
Orsini, Nicola
[1
,2
,4
]
Greenland, Sander
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Epidemiol, Los Angeles, CA USAKarolinska Inst, Inst Environm Med, Unit Biostat, S-10401 Stockholm, Sweden
Greenland, Sander
[3
]
机构:
[1] Karolinska Inst, Inst Environm Med, Unit Biostat, S-10401 Stockholm, Sweden
[2] Karolinska Inst, Inst Environm Med, Unit Nutr Epidemiol, S-10401 Stockholm, Sweden
[3] Univ Calif Los Angeles, Dept Epidemiol, Los Angeles, CA USA
[4] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA USA
We present a command, penlogit, for approximate Bayesian logistic regression using penalized likelihood estimation via data augmentation. This command automatically adds specific prior-data records to a dataset. These records are computed so that they generate a penalty function for the log likelihood of a logistic model, which equals (up to an additive constant) a set of independent log prior distributions on the model parameters. This command overcomes the necessity of relying on specialiZed software and statistical tools (such as Markov chain Monte Carlo) for fitting Bayesian models, and allows one to assess the information content of a prior in terms of the data that would be required to generate the prior as a likelihood function. The command produces data equivalent to normal and generalized log-F priors for the model parameters, providing flexible translation of background information into prior data, which allows calculation of approximate posterior medians and intervals from ordinary maximum likelihood programs. We illustrate the command through an example using data from an observational study of neonatal mortality.
机构:
Columbia Univ, Dept Econ, 420 West 118 St, New York, NY 10027 USA
Nankai Univ, Sch Finance, Tianjin, Peoples R ChinaColumbia Univ, Dept Econ, 420 West 118 St, New York, NY 10027 USA
Bai, Jushan
Liao, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Dept Math, College Pk, MD 20742 USAColumbia Univ, Dept Econ, 420 West 118 St, New York, NY 10027 USA
机构:
Shenzhen Technology Univ, Coll Big Data & Internet, Shenzhen, Peoples R China
Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R ChinaShenzhen Technology Univ, Coll Big Data & Internet, Shenzhen, Peoples R China
Cao, Zhiqiang
Wong, Man Yu
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R ChinaShenzhen Technology Univ, Coll Big Data & Internet, Shenzhen, Peoples R China