Approximate Bayesian logistic regression via penalized likelihood by data augmentation

被引:36
|
作者
Discacciati, Andrea [1 ,2 ]
Orsini, Nicola [1 ,2 ,4 ]
Greenland, Sander [3 ]
机构
[1] Karolinska Inst, Inst Environm Med, Unit Biostat, S-10401 Stockholm, Sweden
[2] Karolinska Inst, Inst Environm Med, Unit Nutr Epidemiol, S-10401 Stockholm, Sweden
[3] Univ Calif Los Angeles, Dept Epidemiol, Los Angeles, CA USA
[4] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA USA
来源
Stata Journal | 2015年 / 15卷 / 03期
关键词
st0400; penlogit; penalized likelihood estimation; data augmentation; Bayesian methods; logistic models; EPIDEMIOLOGIC RESEARCH; PROFILE LIKELIHOOD; MAXIMUM-LIKELIHOOD; VARIABLE SELECTION; PRIORS; DISTRIBUTIONS; PERSPECTIVES;
D O I
10.1177/1536867X1501500306
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
We present a command, penlogit, for approximate Bayesian logistic regression using penalized likelihood estimation via data augmentation. This command automatically adds specific prior-data records to a dataset. These records are computed so that they generate a penalty function for the log likelihood of a logistic model, which equals (up to an additive constant) a set of independent log prior distributions on the model parameters. This command overcomes the necessity of relying on specialiZed software and statistical tools (such as Markov chain Monte Carlo) for fitting Bayesian models, and allows one to assess the information content of a prior in terms of the data that would be required to generate the prior as a likelihood function. The command produces data equivalent to normal and generalized log-F priors for the model parameters, providing flexible translation of background information into prior data, which allows calculation of approximate posterior medians and intervals from ordinary maximum likelihood programs. We illustrate the command through an example using data from an observational study of neonatal mortality.
引用
收藏
页码:712 / 736
页数:25
相关论文
共 50 条
  • [41] Penalized empirical likelihood for longitudinal expectile regression with growing dimensional data
    Zhang, Ting
    Wang, Yanan
    Wang, Lei
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2024, 53 (03) : 752 - 773
  • [42] Sparse Logistic Regression for Diagnosis of Liver Fibrosis in Rat by Using SCAD-Penalized Likelihood
    Yan, Fang-Rong
    Lin, Jin-Guan
    Liu, Yu
    JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2011,
  • [43] APPLE: approximate path for penalized likelihood estimators
    Yi Yu
    Yang Feng
    Statistics and Computing, 2014, 24 : 803 - 819
  • [44] APPLE: approximate path for penalized likelihood estimators
    Yu, Yi
    Feng, Yang
    STATISTICS AND COMPUTING, 2014, 24 (05) : 803 - 819
  • [45] A penalized likelihood approach for dealing with separation in count data regression model
    Mondol, Momenul Haque
    Rahman, M. Shafiqur
    Bari, Wasimul
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (04) : 1799 - 1813
  • [46] Approximate and Pseudo-Likelihood Analysis for Logistic Regression Using External Validation Data to Model Log Exposure
    Lyles, Robert H.
    Kupper, Lawrence L.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2013, 18 (01) : 22 - 38
  • [47] Approximate and Pseudo-Likelihood Analysis for Logistic Regression Using External Validation Data to Model Log Exposure
    Robert H. Lyles
    Lawrence L. Kupper
    Journal of Agricultural, Biological, and Environmental Statistics, 2013, 18 : 22 - 38
  • [48] Bayesian bootstrap inference via regression structure likelihood
    Heckelei, T
    Mittelhammer, RC
    ADVANCES IN ECONOMETRICS, 1996, 11 : 179 - 209
  • [49] Improved approximate Bayesian computation methods via empirical likelihood
    Dmitrieva, Tatiana
    McCullough, Kristin
    Ebrahimi, Nader
    COMPUTATIONAL STATISTICS, 2021, 36 (02) : 1533 - 1552
  • [50] Improved approximate Bayesian computation methods via empirical likelihood
    Tatiana Dmitrieva
    Kristin McCullough
    Nader Ebrahimi
    Computational Statistics, 2021, 36 : 1533 - 1552