POSTERIOR CONTRACTION RATE FOR NON-PARAMETRIC BAYESIAN ESTIMATION OF THE DISPERSION COEFFICIENT OF A STOCHASTIC DIFFERENTIAL EQUATION

被引:1
|
作者
Gugushvili, Shota [1 ]
Spreij, Peter [2 ]
机构
[1] Leiden Univ, Math Inst, POB 9512, NL-2300 RA Leiden, Netherlands
[2] Univ Amsterdam, Korteweg de Vries Inst Math, POB 94248, NL-1090 GE Amsterdam, Netherlands
基金
欧洲研究理事会;
关键词
Dispersion coefficient; non-parametric Bayesian estimation; posterior contraction rate; stochastic differential equation; DIFFUSION-COEFFICIENT; CONVERGENCE-RATES;
D O I
10.1051/ps/2016008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of non-parametric estimation of the deterministic dispersion coefficient of a linear stochastic differential equation based on discrete time observations on its solution. We take a Bayesian approach to the problem and under suitable regularity assumptions derive the posteror contraction rate. This rate turns out to be the optimal posterior contraction rate.
引用
收藏
页码:143 / 153
页数:11
相关论文
共 50 条
  • [1] POSTERIOR CONTRACTION RATES FOR NON-PARAMETRIC STATE AND DRIFT ESTIMATION
    Reich, Sebastian
    Rozdeba, Paul J.
    [J]. FOUNDATIONS OF DATA SCIENCE, 2020, 2 (03): : 333 - 349
  • [2] Non-parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps
    Mancini, Cecilia
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (02) : 270 - 296
  • [3] A Bayesian non-parametric stochastic frontier model
    Assaf, A. George
    Tsionas, Mike
    Kock, Florian
    Josiassen, Alexander
    [J]. ANNALS OF TOURISM RESEARCH, 2021, 87
  • [4] Non-parametric kernel estimation of the coefficient of a diffusion
    Jacod, J
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2000, 27 (01) : 83 - 96
  • [5] A BAYESIAN NON-PARAMETRIC APPROACH TO FREQUENCY ESTIMATION
    Favaro, Martina
    Picci, Giorgio
    [J]. IFAC PAPERSONLINE, 2015, 48 (28): : 478 - 483
  • [6] Bayesian non-parametric inference for Λ-coalescents: Posterior consistency and a parametric method
    Koskela, Jere
    Jenkins, Paul A.
    Spano, Dario
    [J]. BERNOULLI, 2018, 24 (03) : 2122 - 2153
  • [7] Non-parametric Bayesian estimation of a spatial Poisson intensity
    Heikkinen, J
    Arjas, E
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (03) : 435 - 450
  • [8] Marginally specified priors for non-parametric Bayesian estimation
    Kessler, David C.
    Hoff, Peter D.
    Dunson, David B.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (01) : 35 - 58
  • [9] Bayesian non-parametric models for regional prevalence estimation
    Branscum, Adam J.
    Hanson, Timothy E.
    Gardner, Ian A.
    [J]. JOURNAL OF APPLIED STATISTICS, 2008, 35 (05) : 567 - 582
  • [10] A Bayesian approach to non-parametric monotone function estimation
    Shively, Thomas S.
    Sager, Thomas W.
    Walker, Stephen G.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 159 - 175