Marginally specified priors for non-parametric Bayesian estimation

被引:10
|
作者
Kessler, David C. [1 ]
Hoff, Peter D. [2 ]
Dunson, David B. [3 ]
机构
[1] Univ N Carolina, Chapel Hill, NC USA
[2] Univ Washington, Seattle, WA 98195 USA
[3] Duke Univ, Durham, NC 27706 USA
关键词
Contingency tables; Density estimation; Dirichlet process mixture model; Multivariate unordered categorical data; Non-informative prior; Prior elicitation; Sparse data; DIRICHLET PROCESS; MIXTURE; DISTRIBUTIONS; MODELS;
D O I
10.1111/rssb.12059
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to have informed opinions about all aspects of such a parameter but will have real information about functionals of the parameter, such as the population mean or variance. The paper proposes a new framework for non-parametric Bayes inference in which the prior distribution for a possibly infinite dimensional parameter is decomposed into two parts: an informative prior on a finite set of functionals, and a non-parametric conditional prior for the parameter given the functionals. Such priors can be easily constructed from standard non-parametric prior distributions in common use and inherit the large support of the standard priors on which they are based. Additionally, posterior approximations under these informative priors can generally be made via minor adjustments to existing Markov chain approximation algorithms for standard non-parametric prior distributions. We illustrate the use of such priors in the context of multivariate density estimation using Dirichlet process mixture models, and in the modelling of high dimensional sparse contingency tables.
引用
收藏
页码:35 / 58
页数:24
相关论文
共 50 条
  • [1] A BAYESIAN NON-PARAMETRIC APPROACH TO FREQUENCY ESTIMATION
    Favaro, Martina
    Picci, Giorgio
    [J]. IFAC PAPERSONLINE, 2015, 48 (28): : 478 - 483
  • [2] Non-parametric Bayesian estimation of a spatial Poisson intensity
    Heikkinen, J
    Arjas, E
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (03) : 435 - 450
  • [3] Bayesian non-parametric models for regional prevalence estimation
    Branscum, Adam J.
    Hanson, Timothy E.
    Gardner, Ian A.
    [J]. JOURNAL OF APPLIED STATISTICS, 2008, 35 (05) : 567 - 582
  • [4] A Bayesian approach to non-parametric monotone function estimation
    Shively, Thomas S.
    Sager, Thomas W.
    Walker, Stephen G.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 159 - 175
  • [5] Bayesian non-parametric conditional copula estimation of twin data
    Dalla Valle, Luciana
    Leisen, Fabrizio
    Rossini, Luca
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2018, 67 (03) : 523 - 548
  • [6] Semi- and non-parametric Bayesian analysis of duration models with Dirichlet priors: A survey
    Florens, JP
    Mouchart, M
    Rolin, JM
    [J]. INTERNATIONAL STATISTICAL REVIEW, 1999, 67 (02) : 187 - 210
  • [7] Non-Parametric Priors For Generative Adversarial Networks
    Singh, Rajhans
    Turaga, Pavan
    Jayasuriya, Suren
    Garg, Ravi
    Braun, Martin W.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [8] Bayesian estimation of incomplete data using conditionally specified priors
    Maria Sarabia, Jose
    Shahtahmassebi, Golnaz
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (05) : 3419 - 3435
  • [9] On the estimation of total factor productivity: A novel Bayesian non-parametric approach
    Tsionas, Mike G.
    Polemis, Michael L.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 277 (03) : 886 - 902
  • [10] Non-parametric Bayesian annotator combination
    Servajean, M.
    Chailan, R.
    Joly, A.
    [J]. INFORMATION SCIENCES, 2018, 436 : 131 - 145