Marginally specified priors for non-parametric Bayesian estimation

被引:10
|
作者
Kessler, David C. [1 ]
Hoff, Peter D. [2 ]
Dunson, David B. [3 ]
机构
[1] Univ N Carolina, Chapel Hill, NC USA
[2] Univ Washington, Seattle, WA 98195 USA
[3] Duke Univ, Durham, NC 27706 USA
关键词
Contingency tables; Density estimation; Dirichlet process mixture model; Multivariate unordered categorical data; Non-informative prior; Prior elicitation; Sparse data; DIRICHLET PROCESS; MIXTURE; DISTRIBUTIONS; MODELS;
D O I
10.1111/rssb.12059
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to have informed opinions about all aspects of such a parameter but will have real information about functionals of the parameter, such as the population mean or variance. The paper proposes a new framework for non-parametric Bayes inference in which the prior distribution for a possibly infinite dimensional parameter is decomposed into two parts: an informative prior on a finite set of functionals, and a non-parametric conditional prior for the parameter given the functionals. Such priors can be easily constructed from standard non-parametric prior distributions in common use and inherit the large support of the standard priors on which they are based. Additionally, posterior approximations under these informative priors can generally be made via minor adjustments to existing Markov chain approximation algorithms for standard non-parametric prior distributions. We illustrate the use of such priors in the context of multivariate density estimation using Dirichlet process mixture models, and in the modelling of high dimensional sparse contingency tables.
引用
收藏
页码:35 / 58
页数:24
相关论文
共 50 条
  • [21] A Bayesian non-parametric comparison of two treatments
    Damien, P
    Walker, S
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (01) : 51 - 56
  • [22] Bayesian Non-Parametric Clustering of Ranking Data
    Meila, Marina
    Chen, Harr
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (11) : 2156 - 2169
  • [23] A Bayesian Non-parametric Viewpoint to Visual Tracking
    Wang, Yi
    Li, Zhidong
    Wang, Yang
    Chen, Fang
    [J]. 2013 IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION (WACV), 2013, : 482 - 488
  • [24] A hybrid parametric, non-parametric approach to Bayesian target tracking
    Black, JV
    Reed, CM
    [J]. ADFS-96 - FIRST AUSTRALIAN DATA FUSION SYMPOSIUM, 1996, : 178 - 183
  • [25] BAYESIAN NON-PARAMETRIC SIMULATION OF HAZARD FUNCTIONS
    Belyi, Dmitriy
    Popova, Elmira
    Morton, David
    Damien, Paul
    [J]. PROCEEDINGS OF THE 2009 WINTER SIMULATION CONFERENCE (WSC 2009 ), VOL 1-4, 2009, : 467 - +
  • [26] A BAYESIAN NON-PARAMETRIC ESTIMATE FOR MULTIVARIATE REGRESSION
    POLI, I
    [J]. JOURNAL OF ECONOMETRICS, 1985, 28 (02) : 171 - 182
  • [27] Efficient Non-parametric Bayesian Hawkes Processes
    Zhang, Rui
    Walder, Christian
    Rizoiu, Marian-Andrei
    Xie, Lexing
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4299 - 4305
  • [28] Non-Parametric Bayesian Constrained Local Models
    Martins, Pedro
    Caseiro, Rui
    Batista, Jorge
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1797 - 1804
  • [29] Non-parametric Bayesian super-resolution
    Lane, R. O.
    [J]. IET RADAR SONAR AND NAVIGATION, 2010, 4 (04): : 639 - 648
  • [30] A non-parametric Bayesian model for bounded data
    Thanh Minh Nguyen
    Wu, Q. M. Jonathan
    [J]. PATTERN RECOGNITION, 2015, 48 (06) : 2084 - 2095