A Bayesian approach to non-parametric monotone function estimation

被引:67
|
作者
Shively, Thomas S. [1 ]
Sager, Thomas W.
Walker, Stephen G. [2 ]
机构
[1] Univ Texas Austin, Dept Informat Risk & Operat Management, Austin, TX 78712 USA
[2] Univ Kent, Canterbury, Kent, England
关键词
Asymptotic properties; Markov chain Monte Carlo sampling scheme; Mixture prior distributions; Regression splines; Small sample properties; REGRESSION;
D O I
10.1111/j.1467-9868.2008.00677.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper proposes two Bayesian approaches to non-parametric monotone function estimation. The first approach uses a hierarchical Bayes framework and a characterization of smooth monotone functions given by Ramsay that allows unconstrained estimation. The second approach uses a Bayesian regression spline model of Smith and Kohn with a mixture distribution of constrained normal distributions as the prior for the regression coefficients to ensure the monotonicity of the resulting function estimate. The small sample properties of the two function estimators across a range of functions are provided via simulation and compared with existing methods. Asymptotic results are also given that show that Bayesian methods provide consistent function estimators for a large class of smooth functions. An example is provided involving economic demand functions that illustrates the application of the constrained regression spline estimator in the context of a multiple-regression model where two functions are constrained to be monotone.
引用
收藏
页码:159 / 175
页数:17
相关论文
共 50 条
  • [1] A BAYESIAN NON-PARAMETRIC APPROACH TO FREQUENCY ESTIMATION
    Favaro, Martina
    Picci, Giorgio
    [J]. IFAC PAPERSONLINE, 2015, 48 (28): : 478 - 483
  • [2] On the estimation of total factor productivity: A novel Bayesian non-parametric approach
    Tsionas, Mike G.
    Polemis, Michael L.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 277 (03) : 886 - 902
  • [3] A non-parametric Bayesian approach to spike sorting
    Wood, Frank
    Goldwater, Sharon
    Black, Michael J.
    [J]. 2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15, 2006, : 2895 - +
  • [4] APPLYING THE BINARY CODES IN BAYESIAN ESTIMATION TO ESTIMATE THE NON-PARAMETRIC REGRESSION FUNCTION
    Neamah, Mahdi Wahhab
    Radhy, Zainb Hassan
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 : 1235 - 1241
  • [5] A hybrid parametric, non-parametric approach to Bayesian target tracking
    Black, JV
    Reed, CM
    [J]. ADFS-96 - FIRST AUSTRALIAN DATA FUSION SYMPOSIUM, 1996, : 178 - 183
  • [6] Non-parametric Bayesian estimation of a spatial Poisson intensity
    Heikkinen, J
    Arjas, E
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (03) : 435 - 450
  • [7] Marginally specified priors for non-parametric Bayesian estimation
    Kessler, David C.
    Hoff, Peter D.
    Dunson, David B.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (01) : 35 - 58
  • [8] Bayesian non-parametric models for regional prevalence estimation
    Branscum, Adam J.
    Hanson, Timothy E.
    Gardner, Ian A.
    [J]. JOURNAL OF APPLIED STATISTICS, 2008, 35 (05) : 567 - 582
  • [9] Non-parametric estimation of camera response function
    Chatzis, Ioannis S.
    Dermatas, Evangelos S.
    [J]. CIRCUITS AND SYSTEMS FOR SIGNAL PROCESSING , INFORMATION AND COMMUNICATION TECHNOLOGIES, AND POWER SOURCES AND SYSTEMS, VOL 1 AND 2, PROCEEDINGS, 2006, : 385 - 388
  • [10] Wavelets and the theory of non-parametric function estimation
    Johnstone, IM
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1760): : 2475 - 2493