A Bayesian approach to non-parametric monotone function estimation

被引:67
|
作者
Shively, Thomas S. [1 ]
Sager, Thomas W.
Walker, Stephen G. [2 ]
机构
[1] Univ Texas Austin, Dept Informat Risk & Operat Management, Austin, TX 78712 USA
[2] Univ Kent, Canterbury, Kent, England
关键词
Asymptotic properties; Markov chain Monte Carlo sampling scheme; Mixture prior distributions; Regression splines; Small sample properties; REGRESSION;
D O I
10.1111/j.1467-9868.2008.00677.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper proposes two Bayesian approaches to non-parametric monotone function estimation. The first approach uses a hierarchical Bayes framework and a characterization of smooth monotone functions given by Ramsay that allows unconstrained estimation. The second approach uses a Bayesian regression spline model of Smith and Kohn with a mixture distribution of constrained normal distributions as the prior for the regression coefficients to ensure the monotonicity of the resulting function estimate. The small sample properties of the two function estimators across a range of functions are provided via simulation and compared with existing methods. Asymptotic results are also given that show that Bayesian methods provide consistent function estimators for a large class of smooth functions. An example is provided involving economic demand functions that illustrates the application of the constrained regression spline estimator in the context of a multiple-regression model where two functions are constrained to be monotone.
引用
收藏
页码:159 / 175
页数:17
相关论文
共 50 条
  • [31] A Non-parametric Bayesian Approach for Predicting RNA Secondary Structures
    Sato, Kengo
    Hamada, Michiaki
    Mituyama, Toutai
    Asai, Kiyoshi
    Sakakibara, Yasubumi
    [J]. ALGORITHMS IN BIOINFORMATICS, PROCEEDINGS, 2009, 5724 : 286 - +
  • [32] A non-parametric estimation approach in the investigation of spectral statistics
    M. A. Jafarizadeh
    N. Fouladi
    H. Sabri
    B. R. Maleki
    [J]. Indian Journal of Physics, 2013, 87 : 919 - 927
  • [33] A non-parametric estimation approach in the investigation of spectral statistics
    Jafarizadeh, M. A.
    Fouladi, N.
    Sabri, H.
    Maleki, B. R.
    [J]. INDIAN JOURNAL OF PHYSICS, 2013, 87 (09) : 919 - 927
  • [34] Risk of HIV infection as a function of the duration of intravenous drug use:: a non-parametric Bayesian approach
    Gómez, G
    Calle, ML
    Egea, JM
    Muga, R
    [J]. STATISTICS IN MEDICINE, 2000, 19 (19) : 2641 - 2656
  • [35] Non-parametric Bayesian annotator combination
    Servajean, M.
    Chailan, R.
    Joly, A.
    [J]. INFORMATION SCIENCES, 2018, 436 : 131 - 145
  • [36] An unsupervised and non-parametric bayesian classifier
    Zribi, M
    Ghorbel, F
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (1-3) : 97 - 112
  • [37] Non-parametric if and DOA estimation
    Djurovic, I
    Stankovic, L
    [J]. SEVENTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOL 1, PROCEEDINGS, 2003, : 149 - 152
  • [38] NON-PARAMETRIC ESTIMATION OF SURVIVORSHIP
    MEIER, P
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1955, 50 (270) : 589 - 589
  • [39] Non-parametric Bayesian models of response function in dynamic image sequences
    Tichy, Ondrej
    Smidl, Vaclav
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 151 : 90 - 100
  • [40] On non-parametric maximum likelihood estimation of the bivariate survivor function
    Prentice, RL
    [J]. STATISTICS IN MEDICINE, 1999, 18 (17-18) : 2517 - 2527