Non-parametric Bayesian estimation of a spatial Poisson intensity

被引:54
|
作者
Heikkinen, J [1 ]
Arjas, E [1 ]
机构
[1] Finnish Forest Res Inst, FIN-00170 Helsinki, Finland
关键词
Markov chain Monte Carlo; Markov random fields; non-parametric Bayesian inference; spatial point processes; Voronoi tessellations;
D O I
10.1111/1467-9469.00114
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A method introduced by Arjas & Gasbarra (1994) and later modified by Arjas & Heikkinen (1997) for the non-parametric Bayesian estimation of an intensity on the real line is generalized to cover spatial processes. The method is based on a model approximation where the approximating intensities have the structure of a piecewise constant function. Random step functions on the plane are generated using Voronoi tessellations of random point patterns, Smoothing between nearby intensity values is applied by means of a Markov random field prior in the spirit of Bayesian image analysis. The performance of the method is illustrated in examples with both real and simulated data.
引用
收藏
页码:435 / 450
页数:16
相关论文
共 50 条
  • [1] Spatial non-parametric Bayesian clustered coefficients
    Areed, Wala Draidi
    Price, Aiden
    Thompson, Helen
    Malseed, Reid
    Mengersen, Kerrie
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] A BAYESIAN NON-PARAMETRIC APPROACH TO FREQUENCY ESTIMATION
    Favaro, Martina
    Picci, Giorgio
    [J]. IFAC PAPERSONLINE, 2015, 48 (28): : 478 - 483
  • [3] On the consistency of non-parametric estimation of the spatial spectrum
    Ephraty, A
    Tabrikian, J
    Messer, H
    [J]. NINETEENTH CONVENTION OF ELECTRICAL AND ELECTRONICS ENGINEERS IN ISRAEL, 1996, : 247 - 250
  • [4] Bayesian non-parametric models for regional prevalence estimation
    Branscum, Adam J.
    Hanson, Timothy E.
    Gardner, Ian A.
    [J]. JOURNAL OF APPLIED STATISTICS, 2008, 35 (05) : 567 - 582
  • [5] Marginally specified priors for non-parametric Bayesian estimation
    Kessler, David C.
    Hoff, Peter D.
    Dunson, David B.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2015, 77 (01) : 35 - 58
  • [6] A Bayesian approach to non-parametric monotone function estimation
    Shively, Thomas S.
    Sager, Thomas W.
    Walker, Stephen G.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 159 - 175
  • [7] Bayesian Non-Parametric Factor Analysis for Longitudinal Spatial Surfaces
    Berchuck, Samuel I.
    Janko, Mark
    Medeiros, Felipe A.
    Pan, William
    Mukherjee, Sayan
    [J]. BAYESIAN ANALYSIS, 2022, 17 (02): : 435 - 464
  • [8] NON-PARAMETRIC LEVEL SET ESTIMATION FOR SPATIAL DATA
    Bouka, Stephane
    Dabo-Niang, Sophie
    Nkiet, Guy Martial
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2015, 46 (02) : 119 - 158
  • [9] Bayesian non-parametric conditional copula estimation of twin data
    Dalla Valle, Luciana
    Leisen, Fabrizio
    Rossini, Luca
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2018, 67 (03) : 523 - 548
  • [10] Non-Parametric Threshold Estimation for the Wiener-Poisson Risk Model
    You, Honglong
    Gao, Yuan
    [J]. MATHEMATICS, 2019, 7 (06)