Hierarchical Decompositions for the Computation of High-Dimensional Multivariate Normal Probabilities

被引:27
|
作者
Genton, Marc G. [1 ]
Keyes, David E. [1 ]
Turkiyyah, George [2 ]
机构
[1] King Abdullah Univ Sci & Technol, CEMSE Div, Extreme Comp Res Ctr, Thuwal 239556900, Saudi Arabia
[2] Amer Univ Beirut, Dept Comp Sci, Beirut, Lebanon
关键词
Hierarchical low-rank structure; Max-stable process; Multivariate cumulative distribution function; Multivariate skew-normal distribution; Spatial statistics; ALGORITHMS; MATRICES;
D O I
10.1080/10618600.2017.1375936
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a hierarchical decomposition scheme for computing the n-dimensional integral of multivariate normal probabilities that appear frequently in statistics. The scheme exploits the fact that the formally dense covariance matrix can be approximated by a matrix with a hierarchical low-rank structure. It allows the reduction of the computational complexity per Monte Carlo sample from O(n(2)) to O(mn + knlog(n/m)), where k is the numerical rank of off-diagonal matrix blocks and m is the size of small diagonal blocks in the matrix that are not well-approximated by low-rank factorizations and treated as dense submatrices. This hierarchical decomposition leads to substantial efficiencies in multivariate normal probability computations and allows integrations in thousands of dimensions to be practical on modern workstations. Supplementary material for this article is available online.
引用
收藏
页码:268 / 277
页数:10
相关论文
共 50 条
  • [1] Fast computation of high-dimensional multivariate normal probabilities
    Phinikettos, Ioannis
    Gandy, Axel
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (04) : 1521 - 1529
  • [2] Hierarchical-block conditioning approximations for high-dimensional multivariate normal probabilities
    Cao, Jian
    Genton, Marc G.
    Keyes, David E.
    Turkiyyah, George M.
    STATISTICS AND COMPUTING, 2019, 29 (03) : 585 - 598
  • [3] Hierarchical-block conditioning approximations for high-dimensional multivariate normal probabilities
    Jian Cao
    Marc G. Genton
    David E. Keyes
    George M. Turkiyyah
    Statistics and Computing, 2019, 29 : 585 - 598
  • [4] Parallel Approximations for High-Dimensional Multivariate Normal Probability Computation in Confidence Region Detection Applications
    Zhang, Xiran
    Abdulah, Sameh
    Cao, Jian
    Ltaief, Hatem
    Sun, Ying
    Genton, Marc G.
    Keyes, David E.
    PROCEEDINGS 2024 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM, IPDPS 2024, 2024, : 265 - 276
  • [5] Testing independence in high-dimensional multivariate normal data
    Najarzadeh, D.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (14) : 3421 - 3435
  • [6] Decompositions of dependence for high-dimensional extremes
    Cooley, D.
    Thibaud, E.
    BIOMETRIKA, 2019, 106 (03) : 587 - 604
  • [7] Computation of multivariate normal probabilities with polar coordinate systems
    Nomura, Noboru
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (03) : 491 - 512
  • [8] tlrmvnmvt: Computing High-Dimensional Multivariate Normal and Student-t Probabilities with Low-Rank Methods in R
    Cao, Jian
    Keyes, David E.
    Genton, Marc G.
    Turkiyyah, George M.
    JOURNAL OF STATISTICAL SOFTWARE, 2022, 101 (04): : 1 - 25
  • [9] High-dimensional multivariate geostatistics: A Bayesian matrix-normal approach
    Zhang, Lu
    Banerjee, Sudipto
    Finley, Andrew O.
    ENVIRONMETRICS, 2021, 32 (04)
  • [10] Numerical Computation of Multivariate Normal Probabilities Using Bivariate Conditioning
    Genz, Alan
    Trinh, Giang
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, 2016, 163 : 289 - 302