High-dimensional multivariate geostatistics: A Bayesian matrix-normal approach
被引:9
|
作者:
Zhang, Lu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA USAUniv Calif Los Angeles, Dept Biostat, Los Angeles, CA USA
Zhang, Lu
[1
]
Banerjee, Sudipto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA USAUniv Calif Los Angeles, Dept Biostat, Los Angeles, CA USA
Banerjee, Sudipto
[1
]
Finley, Andrew O.
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA
Michigan State Univ, Dept Geog, E Lansing, MI 48824 USAUniv Calif Los Angeles, Dept Biostat, Los Angeles, CA USA
Finley, Andrew O.
[2
,3
]
机构:
[1] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA USA
[2] Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Geog, E Lansing, MI 48824 USA
conjugate Bayesian multivariate regression;
matrix‐
variate normal and inverse‐
Wishart distributions;
multivariate spatial processes;
nearest‐
neighbor Gaussian processes;
GAUSSIAN PROCESS MODELS;
SPATIAL INTERPOLATION;
SPATIOTEMPORAL MODELS;
PREDICTION;
INFERENCE;
D O I:
10.1002/env.2675
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Joint modeling of spatially oriented dependent variables is commonplace in the environmental sciences, where scientists seek to estimate the relationships among a set of environmental outcomes accounting for dependence among these outcomes and the spatial dependence for each outcome. Such modeling is now sought for massive data sets with variables measured at a very large number of locations. Bayesian inference, while attractive for accommodating uncertainties through hierarchical structures, can become computationally onerous for modeling massive spatial data sets because of its reliance on iterative estimation algorithms. This article develops a conjugate Bayesian framework for analyzing multivariate spatial data using analytically tractable posterior distributions that obviate iterative algorithms. We discuss differences between modeling the multivariate response itself as a spatial process and that of modeling a latent process in a hierarchical model. We illustrate the computational and inferential benefits of these models using simulation studies and analysis of a vegetation index data set with spatially dependent observations numbering in the millions.
机构:
UCLA Dept Biostat, 650 Charles E Young Dr South, Los Angeles, CA 90095 USAUCLA Dept Biostat, 650 Charles E Young Dr South, Los Angeles, CA 90095 USA
机构:
King Abdullah Univ Sci & Technol, CEMSE Div, Extreme Comp Res Ctr, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, CEMSE Div, Extreme Comp Res Ctr, Thuwal 239556900, Saudi Arabia
Genton, Marc G.
Keyes, David E.
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, CEMSE Div, Extreme Comp Res Ctr, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, CEMSE Div, Extreme Comp Res Ctr, Thuwal 239556900, Saudi Arabia
Keyes, David E.
Turkiyyah, George
论文数: 0引用数: 0
h-index: 0
机构:
Amer Univ Beirut, Dept Comp Sci, Beirut, LebanonKing Abdullah Univ Sci & Technol, CEMSE Div, Extreme Comp Res Ctr, Thuwal 239556900, Saudi Arabia
机构:
Nokia Bell Labs, Math & Algorithms Grp, 600 Mt Ave, Murray Hill, NJ 07974 USANokia Bell Labs, Math & Algorithms Grp, 600 Mt Ave, Murray Hill, NJ 07974 USA
Jalali, Shirin
Maleki, Arian
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Stat, 1255 Amsterdam Ave, New York, NY 10027 USANokia Bell Labs, Math & Algorithms Grp, 600 Mt Ave, Murray Hill, NJ 07974 USA
机构:
Univ Porto, Fac Engn, LIAAD INESC TEC, R Dr Roberto Frias, P-4200465 Porto, PortugalUniv Porto, Fac Engn, LIAAD INESC TEC, R Dr Roberto Frias, P-4200465 Porto, Portugal
Strecht, Pedro
Mendes-Moreira, Joao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Porto, Fac Engn, LIAAD INESC TEC, R Dr Roberto Frias, P-4200465 Porto, PortugalUniv Porto, Fac Engn, LIAAD INESC TEC, R Dr Roberto Frias, P-4200465 Porto, Portugal
Mendes-Moreira, Joao
论文数: 引用数:
h-index:
机构:
Soares, Carlos
[J].
ADVANCED DATA MINING AND APPLICATIONS, ADMA 2022, PT II,
2022,
13726
: 266
-
278