Hierarchical Decompositions for the Computation of High-Dimensional Multivariate Normal Probabilities
被引:27
|
作者:
Genton, Marc G.
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, CEMSE Div, Extreme Comp Res Ctr, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, CEMSE Div, Extreme Comp Res Ctr, Thuwal 239556900, Saudi Arabia
Genton, Marc G.
[1
]
Keyes, David E.
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, CEMSE Div, Extreme Comp Res Ctr, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, CEMSE Div, Extreme Comp Res Ctr, Thuwal 239556900, Saudi Arabia
Keyes, David E.
[1
]
Turkiyyah, George
论文数: 0引用数: 0
h-index: 0
机构:
Amer Univ Beirut, Dept Comp Sci, Beirut, LebanonKing Abdullah Univ Sci & Technol, CEMSE Div, Extreme Comp Res Ctr, Thuwal 239556900, Saudi Arabia
Turkiyyah, George
[2
]
机构:
[1] King Abdullah Univ Sci & Technol, CEMSE Div, Extreme Comp Res Ctr, Thuwal 239556900, Saudi Arabia
We present a hierarchical decomposition scheme for computing the n-dimensional integral of multivariate normal probabilities that appear frequently in statistics. The scheme exploits the fact that the formally dense covariance matrix can be approximated by a matrix with a hierarchical low-rank structure. It allows the reduction of the computational complexity per Monte Carlo sample from O(n(2)) to O(mn + knlog(n/m)), where k is the numerical rank of off-diagonal matrix blocks and m is the size of small diagonal blocks in the matrix that are not well-approximated by low-rank factorizations and treated as dense submatrices. This hierarchical decomposition leads to substantial efficiencies in multivariate normal probability computations and allows integrations in thousands of dimensions to be practical on modern workstations. Supplementary material for this article is available online.
机构:
Swinburne Univ Technol, Fac Life & Social Sci, Hawthorn, Vic 3122, AustraliaSwinburne Univ Technol, Fac Life & Social Sci, Hawthorn, Vic 3122, Australia
机构:
Penn State Univ, Dept Stat, University Pk, PA 16802 USA
Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USAPenn State Univ, Dept Stat, University Pk, PA 16802 USA
Wang, Lan
Peng, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USAPenn State Univ, Dept Stat, University Pk, PA 16802 USA
Peng, Bo
Li, Runze
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Stat, University Pk, PA 16802 USA
Penn State Univ, Methodol Ctr, University Pk, PA 16802 USAPenn State Univ, Dept Stat, University Pk, PA 16802 USA
机构:
Osaka Univ, Grad Sch Econ, Toyonaka, Osaka 5600043, Japan
Riken AIP, Chuo Ku, Tokyo 1030027, JapanOsaka Univ, Grad Sch Econ, Toyonaka, Osaka 5600043, Japan
Poignard, Benjamin
Asai, Manabu
论文数: 0引用数: 0
h-index: 0
机构:
Soka Univ, Fac Econ, Hachioji, Tokyo, JapanOsaka Univ, Grad Sch Econ, Toyonaka, Osaka 5600043, Japan