Hierarchical Decompositions for the Computation of High-Dimensional Multivariate Normal Probabilities

被引:27
|
作者
Genton, Marc G. [1 ]
Keyes, David E. [1 ]
Turkiyyah, George [2 ]
机构
[1] King Abdullah Univ Sci & Technol, CEMSE Div, Extreme Comp Res Ctr, Thuwal 239556900, Saudi Arabia
[2] Amer Univ Beirut, Dept Comp Sci, Beirut, Lebanon
关键词
Hierarchical low-rank structure; Max-stable process; Multivariate cumulative distribution function; Multivariate skew-normal distribution; Spatial statistics; ALGORITHMS; MATRICES;
D O I
10.1080/10618600.2017.1375936
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a hierarchical decomposition scheme for computing the n-dimensional integral of multivariate normal probabilities that appear frequently in statistics. The scheme exploits the fact that the formally dense covariance matrix can be approximated by a matrix with a hierarchical low-rank structure. It allows the reduction of the computational complexity per Monte Carlo sample from O(n(2)) to O(mn + knlog(n/m)), where k is the numerical rank of off-diagonal matrix blocks and m is the size of small diagonal blocks in the matrix that are not well-approximated by low-rank factorizations and treated as dense submatrices. This hierarchical decomposition leads to substantial efficiencies in multivariate normal probability computations and allows integrations in thousands of dimensions to be practical on modern workstations. Supplementary material for this article is available online.
引用
收藏
页码:268 / 277
页数:10
相关论文
共 50 条
  • [31] Assessing the multivariate normal approximation of the maximum likelihood estimator from high-dimensional, heterogeneous data
    Anastasiou, Andreas
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 3794 - 3828
  • [32] ON COMPUTATION OF NORMAL PROBABILITIES AND PERCENTILES
    WHITE, JS
    ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (03): : 1091 - &
  • [33] SUPPORT UNION RECOVERY IN HIGH-DIMENSIONAL MULTIVARIATE REGRESSION
    Obozinski, Guillaume
    Wainwright, Martin J.
    Jordan, Michael I.
    ANNALS OF STATISTICS, 2011, 39 (01): : 1 - 47
  • [34] Multivariate tests for the evaluation of high-dimensional EEG data
    Hemmelmann, C
    Horn, M
    Reiterer, S
    Schack, B
    Süsse, T
    Weiss, S
    JOURNAL OF NEUROSCIENCE METHODS, 2004, 139 (01) : 111 - 120
  • [35] Small Ball Probabilities for Linear Images of High-Dimensional Distributions
    Rudelson, Mark
    Vershynin, Roman
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (19) : 9594 - 9617
  • [36] High-Dimensional Multivariate Time Series With Additional Structure
    Schweinberger, Michael
    Babkin, Sergii
    Ensor, Katherine B.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (03) : 610 - 622
  • [37] Monitoring multivariate coefficient of variation for high-dimensional processes
    Adegoke, Nurudeen A.
    Dawod, Abdaljbbar
    Adeoti, Olatunde Adebayo
    Sanusi, Ridwan A.
    Abbasi, Saddam Akber
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2022, 38 (05) : 2606 - 2621
  • [38] High-dimensional multivariate mediation with application to neuroimaging data
    Chen, Oliver Y.
    Crainiceanu, Ciprian
    Ogburn, Elizabeth L.
    Caffo, Brian S.
    Wager, Tor D.
    Lindquist, Martin A.
    BIOSTATISTICS, 2018, 19 (02) : 121 - 136
  • [39] Multivariate Technique for Detecting Variations in High-Dimensional Imagery
    Sanusi, Ridwan A.
    Ajadi, Jimoh Olawale
    Abbasi, Saddam Akber
    Dauda, Taofik O.
    Adegoke, Nurudeen A.
    IEEE ACCESS, 2024, 12 : 55874 - 55888
  • [40] A METHOD FOR GENERATING HIGH-DIMENSIONAL MULTIVARIATE BINARY VARIATES
    EMRICH, LJ
    PIEDMONTE, MR
    AMERICAN STATISTICIAN, 1991, 45 (04): : 302 - 304