New bounds on the maximum number of edges in k-quasi-planar graphs

被引:22
|
作者
Suk, Andrew [1 ]
Walczak, Bartosz [2 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Jagiellonian Univ, Fac Math & Comp Sci, Theoret Comp Sci Dept, Krakow, Poland
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
Topological graphs; k-Quasi-planar graphs; Turan-type problems; DAVENPORT-SCHINZEL SEQUENCES; INTERSECTION GRAPHS; CONNECTED SETS; THEOREM;
D O I
10.1016/j.comgeo.2015.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A topological graph is k-quasi-planar if it does not contain k pairwise crossing edges. A 20-year-old conjecture asserts that for every fixed k, the maximum number of edges in a k-quasi-planar graph on n vertices is O(n). Fox and Pach showed that every k-quasi-planar graph with n vertices has at most n(log n)(O(log k)) edges. We improve this upper bound to 2(alpha(n)c) n log n, where alpha(n) denotes the inverse Ackermann function and c depends only on k, for k-quasi-planar graphs in which any two edges intersect in a bounded number of points. We also show that every k-quasi-planar graph with n vertices in which any two edges have at most one point in common has at most O(n log n) edges. This improves the previously known upper bound of 2(alpha(n)c) n log n obtained by Fox, Pach, and Suk. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:24 / 33
页数:10
相关论文
共 50 条
  • [1] THE NUMBER OF EDGES IN k-QUASI-PLANAR GRAPHS
    Fox, Jacob
    Pach, Janos
    Suk, Andrew
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 550 - 561
  • [2] k-Quasi-Planar Graphs
    Suk, Andrew
    [J]. GRAPH DRAWING, 2012, 7034 : 266 - 277
  • [3] On the maximum number of edges in quasi-planar graphs
    Ackerman, Eyal
    Tardos, Gabor
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (03) : 563 - 571
  • [4] On the Relationship Between k-Planar and k-Quasi-Planar Graphs
    Angelini, Patrizio
    Bekos, Michael A.
    Brandenburg, Franz J.
    Da Lozzo, Giordano
    Di Battista, Giuseppe
    Didimo, Walter
    Liotta, Giuseppe
    Montecchiani, Fabrizio
    Rutter, Ignaz
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2017), 2017, 10520 : 59 - 74
  • [5] On the maximum number of edges in planar graphs of bounded degree and matching number
    Jaffke, Lars
    Lima, Paloma T.
    [J]. DISCRETE MATHEMATICS, 2023, 346 (08)
  • [6] Quasi-planar graphs have a linear number of edges
    Agarwal, PK
    Aronov, B
    Pach, J
    Pollack, R
    Sharir, M
    [J]. GRAPH DRAWING, 1996, 1027 : 1 - 7
  • [7] Quasi-planar graphs have a linear number of edges
    Pankaj K. Agarwal
    Boris Aronov
    János Pach
    Richard Pollack
    Micha Sharir
    [J]. Combinatorica, 1997, 17 : 1 - 9
  • [8] Quasi-planar graphs have a linear number of edges
    Agarwal, PK
    Aronov, B
    Pach, J
    Pollack, R
    Sharir, M
    [J]. COMBINATORICA, 1997, 17 (01) : 1 - 9
  • [9] On the number of edges in random planar graphs
    Gerke, S
    McDiarmid, A
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (02): : 165 - 183
  • [10] New bounds on the number of edges in a k-map graph
    Chen, ZZ
    [J]. COMPUTING AND COMBINATORICS, PROCEEDINGS, 2004, 3106 : 319 - 328