Quasi-planar graphs have a linear number of edges

被引:75
|
作者
Agarwal, PK
Aronov, B
Pach, J
Pollack, R
Sharir, M
机构
[1] POLYTECH INST NEW YORK,DEPT COMP & INFORMAT SCI,BROOKLYN,NY 11201
[2] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
[3] CUNY CITY COLL,DEPT COMP SCI,NEW YORK,NY 10021
[4] HUNGARIAN ACAD SCI,BUDAPEST,HUNGARY
[5] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
基金
美国国家科学基金会;
关键词
05 C 35; 05 C 40; 68 R 05;
D O I
10.1007/BF01196127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called quasi-planar if it can be drawn in the plane so that no three of its edges are pairwise crossing. It is shown that the maximum number of edges of a quasi-planar graph with n vertices is O(n).
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] Quasi-planar graphs have a linear number of edges
    Agarwal, PK
    Aronov, B
    Pach, J
    Pollack, R
    Sharir, M
    [J]. GRAPH DRAWING, 1996, 1027 : 1 - 7
  • [2] Quasi-planar graphs have a linear number of edges
    Pankaj K. Agarwal
    Boris Aronov
    János Pach
    Richard Pollack
    Micha Sharir
    [J]. Combinatorica, 1997, 17 : 1 - 9
  • [3] On the maximum number of edges in quasi-planar graphs
    Ackerman, Eyal
    Tardos, Gabor
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (03) : 563 - 571
  • [4] THE NUMBER OF EDGES IN k-QUASI-PLANAR GRAPHS
    Fox, Jacob
    Pach, Janos
    Suk, Andrew
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 550 - 561
  • [5] Online routing in quasi-planar and quasi-polyhedral graphs
    Kranakis, E
    Mott, T
    Stacho, L
    [J]. FOURTH ANNUAL IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS, PROCEEDINGS, 2006, : 426 - +
  • [6] On the number of edges in random planar graphs
    Gerke, S
    McDiarmid, A
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (02): : 165 - 183
  • [7] New bounds on the maximum number of edges in k-quasi-planar graphs
    Suk, Andrew
    Walczak, Bartosz
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2015, 50 : 24 - 33
  • [8] Constant memory routing in quasi-planar and quasi-polyhedral graphs
    Kranakis, Evangelos
    Mott, Tim
    Stacho, Ladislav
    [J]. DISCRETE APPLIED MATHEMATICS, 2008, 156 (18) : 3430 - 3442
  • [9] On quasi-planar graphs: Clique-width and logical description
    Courcelle, Bruno
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 278 : 118 - 135
  • [10] On the maximum number of edges in planar graphs of bounded degree and matching number
    Jaffke, Lars
    Lima, Paloma T.
    [J]. DISCRETE MATHEMATICS, 2023, 346 (08)