Quasi-planar graphs have a linear number of edges

被引:0
|
作者
Pankaj K. Agarwal
Boris Aronov
János Pach
Richard Pollack
Micha Sharir
机构
[1] Duke University,Department of Computer Science
[2] Polytechnic University,Computer and Information Science Department
[3] CUNY,Department of Computer Science, City College
[4] New York University,Courant Institute of Mathematical Sciences
[5] Hungarian Academy of Sciences,School of Mathematical Sciences
[6] Tel Aviv University,undefined
来源
Combinatorica | 1997年 / 17卷
关键词
05 C 35; 05 C 40; 68 R 05;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is calledquasi-planar if it can be drawn in the plane so that no three of its edges are pairwise crossing. It is shown that the maximum number of edges of a quasi-planar graph withn vertices isO(n).
引用
收藏
页码:1 / 9
页数:8
相关论文
共 50 条
  • [1] Quasi-planar graphs have a linear number of edges
    Agarwal, PK
    Aronov, B
    Pach, J
    Pollack, R
    Sharir, M
    [J]. COMBINATORICA, 1997, 17 (01) : 1 - 9
  • [2] Quasi-planar graphs have a linear number of edges
    Agarwal, PK
    Aronov, B
    Pach, J
    Pollack, R
    Sharir, M
    [J]. GRAPH DRAWING, 1996, 1027 : 1 - 7
  • [3] On the maximum number of edges in quasi-planar graphs
    Ackerman, Eyal
    Tardos, Gabor
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (03) : 563 - 571
  • [4] THE NUMBER OF EDGES IN k-QUASI-PLANAR GRAPHS
    Fox, Jacob
    Pach, Janos
    Suk, Andrew
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 550 - 561
  • [5] Online routing in quasi-planar and quasi-polyhedral graphs
    Kranakis, E
    Mott, T
    Stacho, L
    [J]. FOURTH ANNUAL IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS, PROCEEDINGS, 2006, : 426 - +
  • [6] On the number of edges in random planar graphs
    Gerke, S
    McDiarmid, A
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (02): : 165 - 183
  • [7] New bounds on the maximum number of edges in k-quasi-planar graphs
    Suk, Andrew
    Walczak, Bartosz
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2015, 50 : 24 - 33
  • [8] Constant memory routing in quasi-planar and quasi-polyhedral graphs
    Kranakis, Evangelos
    Mott, Tim
    Stacho, Ladislav
    [J]. DISCRETE APPLIED MATHEMATICS, 2008, 156 (18) : 3430 - 3442
  • [9] On quasi-planar graphs: Clique-width and logical description
    Courcelle, Bruno
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 278 : 118 - 135
  • [10] On the maximum number of edges in planar graphs of bounded degree and matching number
    Jaffke, Lars
    Lima, Paloma T.
    [J]. DISCRETE MATHEMATICS, 2023, 346 (08)