THE NUMBER OF EDGES IN k-QUASI-PLANAR GRAPHS

被引:42
|
作者
Fox, Jacob [1 ]
Pach, Janos [2 ,3 ]
Suk, Andrew [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02114 USA
[2] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[3] NYU, Courant Inst, New York, NY 10012 USA
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
topological graphs; quasi-planar graphs; Turan-type problems; INTERSECTION PATTERNS;
D O I
10.1137/110858586
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph drawn in the plane is called k-quasi-planar if it does not contain k pair-wise crossing edges. It has been conjectured for a long time that for every fixed k, the maximum number of edges of a k-quasi-planar graph with n vertices is O(n). The best known upper bound is n(log n)(O(log k)). In the present paper, we improve this bound to (n log n)2(alpha(n)ck) in the special case where the graph is drawn in such a way that every pair of edges meet at most once. Here alpha(n) denotes the (extremely slowly growing) inverse of the Ackermann function. We also make further progress on the conjecture for k-quasi-planar graphs in which every edge is drawn as an x-monotone curve. Extending some ideas of Valtr, we prove that the maximum number of edges of such graphs is at most 2(ck6) n log n.
引用
收藏
页码:550 / 561
页数:12
相关论文
共 50 条
  • [1] New bounds on the maximum number of edges in k-quasi-planar graphs
    Suk, Andrew
    Walczak, Bartosz
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2015, 50 : 24 - 33
  • [2] k-Quasi-Planar Graphs
    Suk, Andrew
    [J]. GRAPH DRAWING, 2012, 7034 : 266 - 277
  • [3] On the Relationship Between k-Planar and k-Quasi-Planar Graphs
    Angelini, Patrizio
    Bekos, Michael A.
    Brandenburg, Franz J.
    Da Lozzo, Giordano
    Di Battista, Giuseppe
    Didimo, Walter
    Liotta, Giuseppe
    Montecchiani, Fabrizio
    Rutter, Ignaz
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2017), 2017, 10520 : 59 - 74
  • [4] On the maximum number of edges in quasi-planar graphs
    Ackerman, Eyal
    Tardos, Gabor
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (03) : 563 - 571
  • [5] Quasi-planar graphs have a linear number of edges
    Agarwal, PK
    Aronov, B
    Pach, J
    Pollack, R
    Sharir, M
    [J]. GRAPH DRAWING, 1996, 1027 : 1 - 7
  • [6] Quasi-planar graphs have a linear number of edges
    Pankaj K. Agarwal
    Boris Aronov
    János Pach
    Richard Pollack
    Micha Sharir
    [J]. Combinatorica, 1997, 17 : 1 - 9
  • [7] Quasi-planar graphs have a linear number of edges
    Agarwal, PK
    Aronov, B
    Pach, J
    Pollack, R
    Sharir, M
    [J]. COMBINATORICA, 1997, 17 (01) : 1 - 9
  • [8] On the number of edges in random planar graphs
    Gerke, S
    McDiarmid, A
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (02): : 165 - 183
  • [9] On the maximum number of edges in planar graphs of bounded degree and matching number
    Jaffke, Lars
    Lima, Paloma T.
    [J]. DISCRETE MATHEMATICS, 2023, 346 (08)
  • [10] Random planar graphs with n nodes and a fixed number of edges
    Gerke, Stefanie
    McDiarmid, Colin
    Steger, Angelika
    Weissl, Andreas
    [J]. PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 999 - 1007