On the Relationship Between k-Planar and k-Quasi-Planar Graphs

被引:2
|
作者
Angelini, Patrizio [1 ]
Bekos, Michael A. [1 ]
Brandenburg, Franz J. [2 ]
Da Lozzo, Giordano [3 ,4 ]
Di Battista, Giuseppe
Didimo, Walter [5 ]
Liotta, Giuseppe [5 ]
Montecchiani, Fabrizio [5 ]
Rutter, Ignaz [6 ]
机构
[1] Univ Tubingen, Tubingen, Germany
[2] Univ Passau, Passau, Germany
[3] Univ Calif Irvine, Irvine, CA USA
[4] Roma Tre Univ, Rome, Italy
[5] Univ Perugia, Perugia, Italy
[6] TU Eindhoven, Eindhoven, Netherlands
关键词
CROSSING NUMBER; MAXIMUM NUMBER; EDGES; ALGORITHMS;
D O I
10.1007/978-3-319-68705-6_5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A graph is k-planar (k >= 1) if it can be drawn in the plane such that no edge is crossed k + 1 times or more. A graph is k-quasi-planar (k >= 2) if it can be drawn in the plane with no k pairwise crossing edges. The families of k-planar and k-quasi-planar graphs have been widely studied in the literature, and several bounds have been proven on their edge density. Nonetheless, only trivial results are known about the relationship between these two graph families. In this paper we prove that, for k >= 3, every k-planar graph is (k + 1)-quasi-planar.
引用
收藏
页码:59 / 74
页数:16
相关论文
共 50 条
  • [1] k-Quasi-Planar Graphs
    Suk, Andrew
    [J]. GRAPH DRAWING, 2012, 7034 : 266 - 277
  • [2] THE NUMBER OF EDGES IN k-QUASI-PLANAR GRAPHS
    Fox, Jacob
    Pach, Janos
    Suk, Andrew
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 550 - 561
  • [3] On the Edge Density of k-Planar Graphs
    Chaplick, Steven
    Loeffler, Andre
    Schmoeger, Rainer
    [J]. GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2018, 2018, 11282 : 636 - 639
  • [4] New bounds on the maximum number of edges in k-quasi-planar graphs
    Suk, Andrew
    Walczak, Bartosz
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2015, 50 : 24 - 33
  • [5] Simple k-planar graphs are simple (k+1)-quasiplanar
    Angelini, Patrizio
    Bekos, Michael A.
    Brandenburg, Franz J.
    Da Lozzo, Giordano
    Di Battista, Giuseppe
    Didimo, Walter
    Hoffmann, Michael
    Liotta, Giuseppe
    Montecchiani, Fabrizio
    Rutter, Ignaz
    Toth, Csaba D.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 142 : 1 - 35
  • [6] k-planar crossing number of random graphs and random regular graphs
    Asplund, John
    Do, Thao
    Hamm, Arran
    Szekely, Laszlo
    Taylor, Libby
    Wang, Zhiyu
    [J]. DISCRETE APPLIED MATHEMATICS, 2018, 247 : 419 - 422
  • [7] On k-planar crossing numbers
    Shahrokhi, Farhad
    Sykora, Ondrej
    Szekely, Laszlo A.
    Vrt'o, Imrich
    [J]. DISCRETE APPLIED MATHEMATICS, 2007, 155 (09) : 1106 - 1115
  • [8] On the k-planar local crossing number
    Asplund, John
    Do, Thao
    Hamm, Arran
    Jain, Vishesh
    [J]. DISCRETE MATHEMATICS, 2019, 342 (04) : 927 - 933
  • [9] Note on k-planar crossing numbers
    Pach, Janos
    Szekely, Laszlo A.
    Toth, Csaba D.
    Toth, Geza
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2018, 68 : 2 - 6
  • [10] On Point Set Embeddings for k-Planar Graphs with Few Bends per Edge
    Kaufmann, Michael
    [J]. THEORY AND PRACTICE OF COMPUTER SCIENCE, SOFSEM 2019, 2019, 11376 : 260 - 271