Non-Penetration Iterative Closest Points for Single-View Multi-Object 6D Pose Estimation

被引:1
|
作者
Zhang, Mengchao [1 ]
Hauser, Kris [2 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Comp Sci, Urbana, IL USA
关键词
D O I
10.1109/ICRA46639.2022.9812043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel iterative closest points (ICP) variant, non-penetration iterative closest points (NPICP), which prevents interpenetration in 6DOF pose optimization and/or joint optimization of multiple object poses. This capability is particularly advantageous in cluttered scenarios, where there are many interactions between objects that constrain the space of valid poses. We use a semi-infinite programming approach to handle non-penetration constraints between complex, non-convex 3D geometries. NPICP is applied to a common use case for ICP as a post-processing method to improve the pose estimation accuracy of a rough guess. The results show that NPICP outperforms ICP, assists in outlier detection, and also outperforms the best result on the IC-BIN dataset in the Benchmark for 6D Object Pose Estimation.
引用
收藏
页码:1520 / 1526
页数:7
相关论文
共 50 条
  • [1] Coupled Iterative Refinement for 6D Multi-Object Pose Estimation
    Lipson, Lahav
    Teed, Zachary
    Goyal, Ankit
    Deng, Jia
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6718 - 6727
  • [2] YOLO-6D-Pose: Enhancing YOLO for Single-Stage Monocular Multi-Object 6D Pose Estimation
    Maji, Debapriya
    Nagori, Soyeb
    Mathew, Manu
    Poddar, Deepak
    [J]. 2024 INTERNATIONAL CONFERENCE IN 3D VISION, 3DV 2024, 2024, : 1616 - 1625
  • [3] Multi-View Keypoints for Reliable 6D Object Pose Estimation
    Li, Alan
    Schoellig, Angela P.
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 6988 - 6994
  • [4] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [5] Active 6D Multi-Object Pose Estimation in Cluttered Scenarios with Deep Reinforcement Learning
    Sock, Juil
    Garcia-Hernando, Guillermo
    Kim, Tae-Kyun
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10564 - 10571
  • [6] DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion
    Wang, Chen
    Xu, Danfei
    Zhu, Yuke
    Martin-Martin, Roberto
    Lu, Cewu
    Li Fei-Fei
    Savarese, Silvio
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3338 - 3347
  • [7] Spatial Attention Improves Iterative 6D Object Pose Estimation
    Stevsic, Stefan
    Hilliges, Otmar
    [J]. 2020 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2020), 2020, : 1070 - 1078
  • [8] Single-Stage 6D Object Pose Estimation
    Hu, Yinlin
    Fua, Pascal
    Wang, Wei
    Salzmann, Mathieu
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2927 - 2936
  • [9] YOLOPose: Transformer-Based Multi-object 6D Pose Estimation Using Keypoint Regression
    Amini, Arash
    Periyasamy, Arul Selvam
    Behnke, Sven
    [J]. INTELLIGENT AUTONOMOUS SYSTEMS 17, IAS-17, 2023, 577 : 392 - 406
  • [10] CenterSnap: Single-Shot Multi-Object 3D Shape Reconstruction and Categorical 6D Pose and Size Estimation
    Irshad, Muhammad Zubair
    Kollar, Thomas
    Laskey, Michael
    Stone, Kevin
    Kira, Zsolt
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 10632 - 10640