Non-Penetration Iterative Closest Points for Single-View Multi-Object 6D Pose Estimation

被引:1
|
作者
Zhang, Mengchao [1 ]
Hauser, Kris [2 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Comp Sci, Urbana, IL USA
关键词
D O I
10.1109/ICRA46639.2022.9812043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel iterative closest points (ICP) variant, non-penetration iterative closest points (NPICP), which prevents interpenetration in 6DOF pose optimization and/or joint optimization of multiple object poses. This capability is particularly advantageous in cluttered scenarios, where there are many interactions between objects that constrain the space of valid poses. We use a semi-infinite programming approach to handle non-penetration constraints between complex, non-convex 3D geometries. NPICP is applied to a common use case for ICP as a post-processing method to improve the pose estimation accuracy of a rough guess. The results show that NPICP outperforms ICP, assists in outlier detection, and also outperforms the best result on the IC-BIN dataset in the Benchmark for 6D Object Pose Estimation.
引用
收藏
页码:1520 / 1526
页数:7
相关论文
共 50 条
  • [31] Segmentation-driven 6D Object Pose Estimation
    Hu, Yinlin
    Hugonot, Joachim
    Fua, Pascal
    Salzmann, Mathieu
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3380 - 3389
  • [32] 6D Object Pose Estimation for Robot Programming by Demonstration
    Ghahramani, Mohammad
    Vakanski, Aleksandar
    Janabi-Sharifi, Farrokh
    [J]. PROGRESS IN OPTOMECHATRONIC TECHNOLOGIES, 2019, 233 : 93 - 101
  • [33] RobotP: A Benchmark Dataset for 6D Object Pose Estimation
    Yuan, Honglin
    Hoogenkamp, Tim
    Veltkamp, Remco C.
    [J]. SENSORS, 2021, 21 (04) : 1 - 26
  • [34] ACCURATE 6D OBJECT POSE ESTIMATION BY POSE CONDITIONED MESH RECONSTRUCTION
    Castro, Pedro
    Armagan, Anil
    Kim, Tae-Kyun
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4147 - 4151
  • [35] Global Hypothesis Generation for 6D Object Pose Estimation
    Michel, Frank
    Kirillov, Alexander
    Brachmann, Eric
    Krull, Alexander
    Gumhold, Stefan
    Savchynskyy, Bogdan
    Rother, Carsten
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 115 - 124
  • [36] Anchor-Based 6D Object Pose Estimation
    Liu, Zehao
    Wang, Hao
    Liu, Fuchang
    [J]. 2021 IEEE 7TH INTERNATIONAL CONFERENCE ON VIRTUAL REALITY (ICVR 2021), 2021, : 33 - 40
  • [37] PointPoseNet: Point Pose Network for Robust 6D Object Pose Estimation
    Chen, Wei
    Duan, Jinming
    Basevi, Hector
    Chang, Hyung Jin
    Leonardis, Ales
    [J]. 2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 2813 - 2822
  • [38] A Pose Proposal and Refinement Network for Better 6D Object Pose Estimation
    Trabelsi, Ameni
    Chaabane, Mohamed
    Blanchard, Nathaniel
    Beveridge, Ross
    [J]. 2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2381 - 2390
  • [39] Towards real-time 6D pose estimation of objects in single-view cone-beam X-ray
    Viviers, Christiaan G. A.
    de Bruijn, Joel
    Filatova, Lena
    de With, Peter H. N.
    van Der Sommen, Fons
    [J]. MEDICAL IMAGING 2022: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2022, 12034
  • [40] 3D Object Retrieval and Pose Estimation for a Single-view Query Image in a Mobile Environment
    Tak, Yoon-Sik
    Hwang, Eenjun
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCES ON ADVANCES IN MULTIMEDIA (MMEDIA 2011), 2011, : 62 - 67