Notes on Schubert, Grothendieck and Key Polynomials
被引:14
|
作者:
Kirillov, Anatol N.
论文数: 0引用数: 0
h-index: 0
机构:
Math Sci Res Inst, Sakyo Ku, Kyoto 6068502, Japan
Kavli Inst Phys & Math Universe IPMU, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan
Natl Res Univ, Higher Sch Econ, Dept Math, 7 Vavilova Str, Moscow 117312, RussiaMath Sci Res Inst, Sakyo Ku, Kyoto 6068502, Japan
Kirillov, Anatol N.
[1
,2
,3
]
机构:
[1] Math Sci Res Inst, Sakyo Ku, Kyoto 6068502, Japan
[2] Kavli Inst Phys & Math Universe IPMU, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan
[3] Natl Res Univ, Higher Sch Econ, Dept Math, 7 Vavilova Str, Moscow 117312, Russia
plactic monoid and reduced plactic algebras;
nilCoxeter and idCoxeter algebras;
Schubert;
beta-Grothendieck;
key and (double) key-Grothendieck;
and Di Francesco-Zinn-Justin polynomials;
Cauchy's type kernels and symmetric;
totally symmetric plane partitions;
and alternating sign matrices;
noncrossing Dyck paths and (rectangular) Schubert polynomials;
multi-parameter deformations of Genocchi numbers of the first and the second types;
Gandhi-Dumont polynomials and (staircase) Schubert polynomials;
double affine nilCoxeter algebras;
ALTERNATING-SIGN MATRICES;
SYMMETRY CLASSES;
SCHUR-FUNCTIONS;
YOUNG TABLEAUX;
ALGEBRA;
FORMULA;
RING;
D O I:
10.3842/SIGMA.2016.034
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We introduce common generalization of (double) Schubert, Grothendieck, Demazure, dual and stable Grothendieck polynomials, and Di Francesco-Zinn-Justin polynomials. Our approach is based on the study of algebraic and combinatorial properties of the reduced rectangular plactic algebra and associated Cauchy kernels.
机构:
Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USAUniv Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
Pechenik, Oliver
Searles, Dominic
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Calif, Dept Math, 3620 S Vermont Ave KAP 104, Los Angeles, CA 90089 USAUniv Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA