Notes on Schubert, Grothendieck and Key Polynomials

被引:14
|
作者
Kirillov, Anatol N. [1 ,2 ,3 ]
机构
[1] Math Sci Res Inst, Sakyo Ku, Kyoto 6068502, Japan
[2] Kavli Inst Phys & Math Universe IPMU, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan
[3] Natl Res Univ, Higher Sch Econ, Dept Math, 7 Vavilova Str, Moscow 117312, Russia
关键词
plactic monoid and reduced plactic algebras; nilCoxeter and idCoxeter algebras; Schubert; beta-Grothendieck; key and (double) key-Grothendieck; and Di Francesco-Zinn-Justin polynomials; Cauchy's type kernels and symmetric; totally symmetric plane partitions; and alternating sign matrices; noncrossing Dyck paths and (rectangular) Schubert polynomials; multi-parameter deformations of Genocchi numbers of the first and the second types; Gandhi-Dumont polynomials and (staircase) Schubert polynomials; double affine nilCoxeter algebras; ALTERNATING-SIGN MATRICES; SYMMETRY CLASSES; SCHUR-FUNCTIONS; YOUNG TABLEAUX; ALGEBRA; FORMULA; RING;
D O I
10.3842/SIGMA.2016.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce common generalization of (double) Schubert, Grothendieck, Demazure, dual and stable Grothendieck polynomials, and Di Francesco-Zinn-Justin polynomials. Our approach is based on the study of algebraic and combinatorial properties of the reduced rectangular plactic algebra and associated Cauchy kernels.
引用
收藏
页数:57
相关论文
共 50 条
  • [1] Noncommutative Schubert calculus and Grothendieck polynomials
    Lenart, C
    ADVANCES IN MATHEMATICS, 1999, 143 (01) : 159 - 183
  • [2] Schubert functors and Schubert polynomials
    Kraskiewicz, W
    Pragacz, P
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (08) : 1327 - 1344
  • [3] On the Degree of Grothendieck Polynomials
    Dreyer, Matt
    Meszaros, Karola
    St Dizier, Avery
    ALGEBRAIC COMBINATORICS, 2024, 7 (03): : 627 - 658
  • [4] Flagged Grothendieck polynomials
    Matsumura, Tomoo
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 49 (03) : 209 - 228
  • [5] On the Support of Grothendieck Polynomials
    Meszaros, Karola
    Setiabrata, Linus
    Dizier, Avery St.
    ANNALS OF COMBINATORICS, 2024,
  • [6] Flagged Grothendieck polynomials
    Tomoo Matsumura
    Journal of Algebraic Combinatorics, 2019, 49 : 209 - 228
  • [7] Specializations of grothendieck polynomials
    Buch, AS
    Rimányi, R
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (01) : 1 - 4
  • [8] SCHUBERT POLYNOMIALS
    LASCOUX, A
    SCHUTZENBERGER, MP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 294 (13): : 447 - 450
  • [9] Decompositions of Grothendieck Polynomials
    Pechenik, Oliver
    Searles, Dominic
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (10) : 3214 - 3241
  • [10] Factorial Grothendieck polynomials
    McNamara, Peter J.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):