Notes on Schubert, Grothendieck and Key Polynomials

被引:14
|
作者
Kirillov, Anatol N. [1 ,2 ,3 ]
机构
[1] Math Sci Res Inst, Sakyo Ku, Kyoto 6068502, Japan
[2] Kavli Inst Phys & Math Universe IPMU, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan
[3] Natl Res Univ, Higher Sch Econ, Dept Math, 7 Vavilova Str, Moscow 117312, Russia
关键词
plactic monoid and reduced plactic algebras; nilCoxeter and idCoxeter algebras; Schubert; beta-Grothendieck; key and (double) key-Grothendieck; and Di Francesco-Zinn-Justin polynomials; Cauchy's type kernels and symmetric; totally symmetric plane partitions; and alternating sign matrices; noncrossing Dyck paths and (rectangular) Schubert polynomials; multi-parameter deformations of Genocchi numbers of the first and the second types; Gandhi-Dumont polynomials and (staircase) Schubert polynomials; double affine nilCoxeter algebras; ALTERNATING-SIGN MATRICES; SYMMETRY CLASSES; SCHUR-FUNCTIONS; YOUNG TABLEAUX; ALGEBRA; FORMULA; RING;
D O I
10.3842/SIGMA.2016.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce common generalization of (double) Schubert, Grothendieck, Demazure, dual and stable Grothendieck polynomials, and Di Francesco-Zinn-Justin polynomials. Our approach is based on the study of algebraic and combinatorial properties of the reduced rectangular plactic algebra and associated Cauchy kernels.
引用
收藏
页数:57
相关论文
共 50 条
  • [31] Duality and deformations of stable Grothendieck polynomials
    Yeliussizov, Damir
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 45 (01) : 295 - 344
  • [32] Weighted Tutte–Grothendieck Polynomials of Graphs
    Himadri Shekhar Chakraborty
    Tsuyoshi Miezaki
    Chong Zheng
    Graphs and Combinatorics, 2023, 39
  • [33] On some properties of symplectic Grothendieck polynomials
    Marberg, Eric
    Pawlowski, Brendan
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (01)
  • [34] Vertex models, TASEP and Grothendieck polynomials
    Motegi, Kohei
    Sakai, Kazumitsu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (35)
  • [35] CRYSTAL STRUCTURES FOR SYMMETRIC GROTHENDIECK POLYNOMIALS
    CARA MONICAL
    OLIVER PECHENIK
    TRAVIS SCRIMSHAW
    Transformation Groups, 2021, 26 : 1025 - 1075
  • [36] DETERMINANTAL FORMULAS FOR DUAL GROTHENDIECK POLYNOMIALS
    Amanov, Alimzhan
    Yeliussizov, Damir
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (10) : 4113 - 4128
  • [37] Free fermions and canonical Grothendieck polynomials
    Iwao, Shinsuke
    Motegi, Kohei
    Scrimshaw, Travis
    ALGEBRAIC COMBINATORICS, 2024, 7 (01): : 245 - 274
  • [38] Duality and deformations of stable Grothendieck polynomials
    Damir Yeliussizov
    Journal of Algebraic Combinatorics, 2017, 45 : 295 - 344
  • [39] Positive specializations of symmetric Grothendieck polynomials
    Yeliussizov, Damir
    ADVANCES IN MATHEMATICS, 2020, 363
  • [40] Newton polytopes and symmetric Grothendieck polynomials
    Escobar, Laura
    Yong, Alexander
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (08) : 831 - 834