Notes on Schubert, Grothendieck and Key Polynomials

被引:14
|
作者
Kirillov, Anatol N. [1 ,2 ,3 ]
机构
[1] Math Sci Res Inst, Sakyo Ku, Kyoto 6068502, Japan
[2] Kavli Inst Phys & Math Universe IPMU, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan
[3] Natl Res Univ, Higher Sch Econ, Dept Math, 7 Vavilova Str, Moscow 117312, Russia
关键词
plactic monoid and reduced plactic algebras; nilCoxeter and idCoxeter algebras; Schubert; beta-Grothendieck; key and (double) key-Grothendieck; and Di Francesco-Zinn-Justin polynomials; Cauchy's type kernels and symmetric; totally symmetric plane partitions; and alternating sign matrices; noncrossing Dyck paths and (rectangular) Schubert polynomials; multi-parameter deformations of Genocchi numbers of the first and the second types; Gandhi-Dumont polynomials and (staircase) Schubert polynomials; double affine nilCoxeter algebras; ALTERNATING-SIGN MATRICES; SYMMETRY CLASSES; SCHUR-FUNCTIONS; YOUNG TABLEAUX; ALGEBRA; FORMULA; RING;
D O I
10.3842/SIGMA.2016.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce common generalization of (double) Schubert, Grothendieck, Demazure, dual and stable Grothendieck polynomials, and Di Francesco-Zinn-Justin polynomials. Our approach is based on the study of algebraic and combinatorial properties of the reduced rectangular plactic algebra and associated Cauchy kernels.
引用
收藏
页数:57
相关论文
共 50 条
  • [21] Twisted Schubert polynomials
    Ricky Ini Liu
    Selecta Mathematica, 2022, 28
  • [22] The skew Schubert polynomials
    Chen, WYC
    Yan, GG
    Yang, ALB
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (08) : 1181 - 1196
  • [23] Rational Schubert polynomials
    Aker, Kursat
    Tutas, Nesrin
    TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (03) : 439 - 452
  • [24] Quantum Schubert polynomials
    Fomin, S
    Gelfand, S
    Postnikov, A
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 10 (03) : 565 - 596
  • [25] Complements of Schubert polynomials
    Fan, Neil J. Y.
    Guo, Peter L.
    Liu, Nicolas Y.
    ADVANCES IN APPLIED MATHEMATICS, 2024, 157
  • [26] Skew Schubert polynomials
    Lenart, C
    Sottile, F
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (11) : 3319 - 3328
  • [27] On the multiplication of Schubert polynomials
    Winkel, R
    ADVANCES IN APPLIED MATHEMATICS, 1998, 20 (01) : 73 - 97
  • [28] QUANTUM DOUBLE SCHUBERT POLYNOMIALS REPRESENT SCHUBERT CLASSES
    Lam, Thomas
    Shimozono, Mark
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (03) : 835 - 850
  • [29] Quantum double Schubert polynomials, quantum Schubert polynomials and Vafa-Intriligator formula
    Kirillov, AN
    Maeno, T
    DISCRETE MATHEMATICS, 2000, 217 (1-3) : 191 - 223
  • [30] Tableau formulas for skew Grothendieck polynomials
    Tamvakis, Harry
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2024, 76 (01) : 147 - 172