Braess paradox at the mesoscopic scale

被引:18
|
作者
Sousa, A. A. [1 ,2 ]
Chaves, Andrey [1 ]
Farias, G. A. [1 ]
Peeters, F. M. [1 ,2 ]
机构
[1] Univ Fed Ceara, Dept Fis, BR-60455900 Fortaleza, Ceara, Brazil
[2] Univ Antwerp, Dept Phys, B-2020 Antwerp, Belgium
来源
PHYSICAL REVIEW B | 2013年 / 88卷 / 24期
关键词
NETWORKS; NANOSTRUCTURES; TRANSPORT;
D O I
10.1103/PhysRevB.88.245417
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically demonstrate that the transport inefficiency recently found experimentally for branched-out mesoscopic networks can also be observed in a quantum ring of finite width with an attached central horizontal branch. This is done by investigating the time evolution of an electron wave packet in such a system. Our numerical results show that the conductivity of the ring does not necessary improve if one adds an extra channel. This ensures that there exists a quantum analog of the Braess paradox, originating from quantum scattering and interference.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Resolving Braess's Paradox in Random Networks
    Fotakis, Dimitris
    Kaporis, Alexis C.
    Lianeas, Thanasis
    Spirakis, Paul G.
    ALGORITHMICA, 2017, 78 (03) : 788 - 818
  • [32] Braess’s Paradox for Flows over Time
    Martin Macko
    Kate Larson
    Ľuboš Steskal
    Theory of Computing Systems, 2013, 53 : 86 - 106
  • [33] Braess's Paradox in Large Random Graphs
    Valiant, Gregory
    Roughgarden, Tim
    RANDOM STRUCTURES & ALGORITHMS, 2010, 37 (04) : 495 - 515
  • [34] The Braess paradox in mechanical, traffic, and other networks
    Penchina, CM
    Penchina, LJ
    AMERICAN JOURNAL OF PHYSICS, 2003, 71 (05) : 479 - 482
  • [35] Resolving Braess’s Paradox in Random Networks
    Dimitris Fotakis
    Alexis C. Kaporis
    Thanasis Lianeas
    Paul G. Spirakis
    Algorithmica, 2017, 78 : 788 - 818
  • [36] Using the Braess Paradox to Teach Tacit Negotiation
    Merlone, Ugo
    Romano, Angelo
    SIMULATION & GAMING, 2016, 47 (06) : 780 - 795
  • [37] Network Characterizations for Excluding Braess’s Paradox
    Xujin Chen
    Zhuo Diao
    Xiaodong Hu
    Theory of Computing Systems, 2016, 59 : 747 - 780
  • [38] Characterizing Braess's Paradox for traffic networks
    Hagstrom, JN
    Abrams, RA
    2001 IEEE INTELLIGENT TRANSPORTATION SYSTEMS - PROCEEDINGS, 2001, : 836 - 841
  • [39] On the Braess Paradox with Nonlinear Dynamics and Control Theory
    Rinaldo M. Colombo
    Helge Holden
    Journal of Optimization Theory and Applications, 2016, 168 : 216 - 230
  • [40] Universal Braess paradox in open quantum dots
    Barbosa, A. L. R.
    Bazeia, D.
    Ramos, J. G. G. S.
    PHYSICAL REVIEW E, 2014, 90 (04):