Braess paradox at the mesoscopic scale

被引:18
|
作者
Sousa, A. A. [1 ,2 ]
Chaves, Andrey [1 ]
Farias, G. A. [1 ]
Peeters, F. M. [1 ,2 ]
机构
[1] Univ Fed Ceara, Dept Fis, BR-60455900 Fortaleza, Ceara, Brazil
[2] Univ Antwerp, Dept Phys, B-2020 Antwerp, Belgium
来源
PHYSICAL REVIEW B | 2013年 / 88卷 / 24期
关键词
NETWORKS; NANOSTRUCTURES; TRANSPORT;
D O I
10.1103/PhysRevB.88.245417
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically demonstrate that the transport inefficiency recently found experimentally for branched-out mesoscopic networks can also be observed in a quantum ring of finite width with an attached central horizontal branch. This is done by investigating the time evolution of an electron wave packet in such a system. Our numerical results show that the conductivity of the ring does not necessary improve if one adds an extra channel. This ensures that there exists a quantum analog of the Braess paradox, originating from quantum scattering and interference.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Dynamics in Braess Paradox with Nonimpulsive Commuters
    Dal Forno, Arianna
    Merlone, Ugo
    Avrutin, Viktor
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [22] Braess's paradox in a loss network
    J Appl Probab, 1 (155):
  • [23] Braess' paradox in a generalised traffic network
    Zverovich, Vadim
    Avineri, Erel
    JOURNAL OF ADVANCED TRANSPORTATION, 2015, 49 (01) : 114 - 138
  • [24] REPLICATING HUMAN INTERACTION IN BRAESS PARADOX
    Dal Forno, Arianna
    Merlone, Ugo
    2013 WINTER SIMULATION CONFERENCE (WSC), 2013, : 1754 - 1765
  • [25] Braess' paradox in the age of traffic information
    Bittihn, S.
    Schadschneider, A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (03):
  • [26] The effect of modern traffic information on Braess' paradox
    Bittihn, Stefan
    Schadschneider, Andreas
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 571
  • [27] Braess's Paradox for Flows over Time
    Macko, Martin
    Larson, Kate
    Steskal, Lubos
    ALGORITHMIC GAME THEORY, 2010, 6386 : 262 - +
  • [28] Braess's Paradox for Flows over Time
    Macko, Martin
    Larson, Kate
    Steskal, L'ubos
    THEORY OF COMPUTING SYSTEMS, 2013, 53 (01) : 86 - 106
  • [29] Network Characterizations for Excluding Braess's Paradox
    Chen, Xujin
    Diao, Zhuo
    Hu, Xiaodong
    THEORY OF COMPUTING SYSTEMS, 2016, 59 (04) : 747 - 780
  • [30] Collective intelligence, data routing and Braess' paradox
    Wolpert, DH
    Tumer, K
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2002, 16 : 359 - 387