Universal Braess paradox in open quantum dots

被引:13
|
作者
Barbosa, A. L. R. [1 ]
Bazeia, D. [2 ]
Ramos, J. G. G. S. [2 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Fis, BR-52171900 Recife, PE, Brazil
[2] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, Paraiba, Brazil
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 04期
关键词
D O I
10.1103/PhysRevE.90.042915
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present analytical and numerical results that demonstrate the presence of the Braess paradox in chaotic quantum dots. The paradox that we identify, originally perceived in classical networks, shows that the addition of more capacity to the network can suppress the current flow in the universal regime. We investigate the weak localization term, showing that it presents the paradox encoded in a saturation minimum of the conductance, under the presence of hyperflow in the external leads. In addition, we demonstrate that the weak localization suffers a transition signal depending on the overcapacity lead and presents an echo on the magnetic crossover before going to zero due to the full time-reversal symmetry breaking. We also show that the quantum interference contribution can dominate the Ohm term in the presence of constrictions and that the corresponding Fano factor engenders an anomalous behavior.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Braess paradox in a quantum network
    Banerjee, Abhishek
    Bej, Pratapaditya
    PHYSICAL REVIEW A, 2021, 104 (05)
  • [2] THE BRAESS PARADOX
    FRANK, M
    MATHEMATICAL PROGRAMMING, 1981, 20 (03) : 283 - 302
  • [3] THE PREVALENCE OF BRAESS PARADOX
    STEINBERG, R
    ZANGWILL, WI
    TRANSPORTATION SCIENCE, 1983, 17 (03) : 301 - 318
  • [4] Braess paradox at the mesoscopic scale
    Sousa, A. A.
    Chaves, Andrey
    Farias, G. A.
    Peeters, F. M.
    PHYSICAL REVIEW B, 2013, 88 (24):
  • [5] Collective intelligence and Braess' paradox
    Tumer, K
    Wolpert, D
    SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), 2000, : 104 - 109
  • [6] Braess's paradox in expanders
    Chung, Fan
    Young, Stephen J.
    Zhao, Wenbo
    RANDOM STRUCTURES & ALGORITHMS, 2012, 41 (04) : 451 - 468
  • [7] Matroids Are Immune to Braess' Paradox
    Fujishige, Satoru
    Goemans, Michel X.
    Harks, Tobias
    Peis, Britta
    Zenklusen, Rico
    MATHEMATICS OF OPERATIONS RESEARCH, 2017, 42 (03) : 745 - 761
  • [8] On a mechanical analogue of the Braess paradox
    Chen, YY
    CHINESE JOURNAL OF PHYSICS, 2005, 43 (06) : 1004 - 1016
  • [9] The Braess' paradox for pendent twins
    Ciardo, Lorenzo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 590 (590) : 304 - 316
  • [10] Braess paradox with mixed strategies
    Haller, Hans
    ECONOMICS BULLETIN, 2023, 43 (01): : 93 - 98