On a mechanical analogue of the Braess paradox

被引:0
|
作者
Chen, YY [1 ]
机构
[1] Natl Taiwan Univ, Dept Phys, Taipei 10764, Taiwan
[2] Natl Taiwan Univ, Inst Astrophys, Taipei 10764, Taiwan
[3] Natl Ctr Theoret Sci Taipei, Taipei, Taiwan
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Braess paradox states that adding a branching route to an already congested road might actually worsen traffic jams. An elegant mechanical analogue to this paradox has already been proposed (J. E. Cohen and P. Horowitz, Nature 352, 699-701 (1991)) which seems to defy many people's initial intuition. We examine the motion of this analog mechanical system in an attempt to make the counter-intuitive prediction more comprehensible, while also clarifying a misleading remark contained in this reference.
引用
收藏
页码:1004 / 1016
页数:13
相关论文
共 50 条
  • [1] KEMENY'S CONSTANT AND AN ANALOGUE OF BRAESS' PARADOX FOR TREES
    Kirkland, Steve
    Zeng, Ze
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2016, 31 : 444 - 464
  • [2] The Braess paradox in mechanical, traffic, and other networks
    Penchina, CM
    Penchina, LJ
    [J]. AMERICAN JOURNAL OF PHYSICS, 2003, 71 (05) : 479 - 482
  • [3] THE BRAESS PARADOX
    FRANK, M
    [J]. MATHEMATICAL PROGRAMMING, 1981, 20 (03) : 283 - 302
  • [4] THE PREVALENCE OF BRAESS PARADOX
    STEINBERG, R
    ZANGWILL, WI
    [J]. TRANSPORTATION SCIENCE, 1983, 17 (03) : 301 - 318
  • [5] Braess paradox at the mesoscopic scale
    Sousa, A. A.
    Chaves, Andrey
    Farias, G. A.
    Peeters, F. M.
    [J]. PHYSICAL REVIEW B, 2013, 88 (24):
  • [6] Matroids Are Immune to Braess' Paradox
    Fujishige, Satoru
    Goemans, Michel X.
    Harks, Tobias
    Peis, Britta
    Zenklusen, Rico
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2017, 42 (03) : 745 - 761
  • [7] Collective intelligence and Braess' paradox
    Tumer, K
    Wolpert, D
    [J]. SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), 2000, : 104 - 109
  • [8] Braess's paradox in expanders
    Chung, Fan
    Young, Stephen J.
    Zhao, Wenbo
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2012, 41 (04) : 451 - 468
  • [9] The Braess' paradox for pendent twins
    Ciardo, Lorenzo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 590 : 304 - 316
  • [10] Braess paradox in a quantum network
    Banerjee, Abhishek
    Bej, Pratapaditya
    [J]. PHYSICAL REVIEW A, 2021, 104 (05)