Braess's Paradox in Large Random Graphs

被引:19
|
作者
Valiant, Gregory [2 ]
Roughgarden, Tim [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
关键词
Braess's Paradox; random graphs; selfish routing; traffic equilibria;
D O I
10.1002/rsa.20325
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Braess's Paradox is the counterintuitive fact that removing edges from a network with "selfish routing" can decrease the latency incurred by traffic in an equilibrium flow. We prove that Braess's Paradox is likely to occur in a natural random network model: with high probability, there is a traffic rate and a set of edges whose removal improves the latency of traffic in an equilibrium flow by a constant factor. (C) 2010 Wiley Periodicals, Inc. Random Struct. Alg., 37, 495-515, 2010
引用
收藏
页码:495 / 515
页数:21
相关论文
共 50 条
  • [1] Braess's Paradox in Large Sparse Graphs
    Chung, Fan
    Young, Stephen J.
    INTERNET AND NETWORK ECONOMICS, 2010, 6484 : 194 - 208
  • [2] Braess's Paradox for the Spectral Gap in Random Graphs and Delocalization of Eigenvectors
    Eldan, Ronen
    Racz, Miklos Z.
    Schramm, Tselil
    RANDOM STRUCTURES & ALGORITHMS, 2017, 50 (04) : 584 - 611
  • [3] Resolving Braess's Paradox in Random Networks
    Fotakis, Dimitris
    Kaporis, Alexis C.
    Lianeas, Thanasis
    Spirakis, Paul G.
    ALGORITHMICA, 2017, 78 (03) : 788 - 818
  • [4] Resolving Braess’s Paradox in Random Networks
    Dimitris Fotakis
    Alexis C. Kaporis
    Thanasis Lianeas
    Paul G. Spirakis
    Algorithmica, 2017, 78 : 788 - 818
  • [5] Braess's paradox in expanders
    Chung, Fan
    Young, Stephen J.
    Zhao, Wenbo
    RANDOM STRUCTURES & ALGORITHMS, 2012, 41 (04) : 451 - 468
  • [6] On Braess's paradox and routing algorithms
    Vieira, Luiz F. M.
    Vieira, Marcos A. M.
    INTERNET TECHNOLOGY LETTERS, 2022, 5 (03)
  • [7] The Braess's Paradox in Dynamic Traffic
    Zhuang, Dingyi
    Huang, Yuzhu
    Jayawardana, Vindula
    Zhao, Jinhua
    Suo, Dajiang
    Wu, Cathy
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 1018 - 1023
  • [8] Braess's paradox in a loss network
    Bean, NG
    Kelly, FP
    Taylor, PG
    JOURNAL OF APPLIED PROBABILITY, 1997, 34 (01) : 155 - 159
  • [9] Braess's paradox in a loss network
    J Appl Probab, 1 (155):
  • [10] THE BRAESS PARADOX
    FRANK, M
    MATHEMATICAL PROGRAMMING, 1981, 20 (03) : 283 - 302