Joins of 1-Planar Graphs

被引:6
|
作者
Czap, Julius [1 ]
Hudak, David [2 ]
Madaras, Tomas [3 ]
机构
[1] Tech Univ Kosice, Fac Econ, Dept Appl Math & Business Informat, Kosice 04001, Slovakia
[2] VSL Software As, Kosice 04001, Slovakia
[3] Pavol Jozef Safarik Univ, Fac Sci, Inst Math, Kosice 04001, Slovakia
关键词
1-Planar graph; join product;
D O I
10.1007/s10114-014-4017-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph is called 1-planar if it admits a drawing in the plane such that each edge is crossed at most once. In this paper, we study 1-planar graph joins. We prove that the join G + H is 1-planar if and only if the pair [G, H] is subgraph-majorized by one of pairs [C-3 boolean OR C-3, C-3], [C-4, C-4], [C-4, C-3], [K-2,K-1,K-1, P-3] in the case when both elements of the graph join have at least three vertices. If one element has at most two vertices, then we give several necessary/sufficient conditions for the bigger element.
引用
收藏
页码:1867 / 1876
页数:10
相关论文
共 50 条
  • [1] Joins of 1-Planar Graphs
    Július CZAP
    Dvid HUDK
    Tom MADARAS
    Acta Mathematica Sinica,English Series, 2014, 30 (11) : 1867 - 1876
  • [2] Joins of 1-planar graphs
    Július Czap
    Dávid Hudák
    Tomáš Madaras
    Acta Mathematica Sinica, English Series, 2014, 30 : 1867 - 1876
  • [3] Remarks on the joins of 1-planar graphs
    Ouyang, Zhangdong
    Ge, Jun
    Chen, Yichao
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 362
  • [4] On the Pagenumber of 1-Planar Graphs
    Xiaxia Guan
    Weihua Yang
    Chinese Annals of Mathematics, Series B, 2025, 46 (2) : 287 - 302
  • [5] Outer 1-Planar Graphs
    Christopher Auer
    Christian Bachmaier
    Franz J. Brandenburg
    Andreas Gleißner
    Kathrin Hanauer
    Daniel Neuwirth
    Josef Reislhuber
    Algorithmica, 2016, 74 : 1293 - 1320
  • [6] A note on 1-planar graphs
    Ackerman, Eyal
    DISCRETE APPLIED MATHEMATICS, 2014, 175 : 104 - 108
  • [7] On the Pagenumber of 1-Planar Graphs
    Xiaxia GUAN
    Weihua YANG
    Chinese Annals of Mathematics,Series B, 2025, (02) : 287 - 302
  • [8] Outer 1-Planar Graphs
    Auer, Christopher
    Bachmaier, Christian
    Brandenburg, Franz J.
    Gleissner, Andreas
    Hanauer, Kathrin
    Neuwirth, Daniel
    Reislhuber, Josef
    ALGORITHMICA, 2016, 74 (04) : 1293 - 1320
  • [9] The structure of 1-planar graphs
    Fabrici, Igor
    Madaras, Tomas
    DISCRETE MATHEMATICS, 2007, 307 (7-8) : 854 - 865
  • [10] On the sizes of bipartite 1-planar graphs
    Huang, Yuanqiu
    Ouyang, Zhangdong
    Dong, Fengming
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):