Joins of 1-Planar Graphs

被引:6
|
作者
Czap, Julius [1 ]
Hudak, David [2 ]
Madaras, Tomas [3 ]
机构
[1] Tech Univ Kosice, Fac Econ, Dept Appl Math & Business Informat, Kosice 04001, Slovakia
[2] VSL Software As, Kosice 04001, Slovakia
[3] Pavol Jozef Safarik Univ, Fac Sci, Inst Math, Kosice 04001, Slovakia
关键词
1-Planar graph; join product;
D O I
10.1007/s10114-014-4017-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph is called 1-planar if it admits a drawing in the plane such that each edge is crossed at most once. In this paper, we study 1-planar graph joins. We prove that the join G + H is 1-planar if and only if the pair [G, H] is subgraph-majorized by one of pairs [C-3 boolean OR C-3, C-3], [C-4, C-4], [C-4, C-3], [K-2,K-1,K-1, P-3] in the case when both elements of the graph join have at least three vertices. If one element has at most two vertices, then we give several necessary/sufficient conditions for the bigger element.
引用
收藏
页码:1867 / 1876
页数:10
相关论文
共 50 条
  • [21] On edge colorings of 1-planar graphs
    Zhang, Xin
    Wu, Jian-Liang
    INFORMATION PROCESSING LETTERS, 2011, 111 (03) : 124 - 128
  • [22] On total colorings of 1-planar graphs
    Xin Zhang
    Jianfeng Hou
    Guizhen Liu
    Journal of Combinatorial Optimization, 2015, 30 : 160 - 173
  • [23] Packing Trees into 1-Planar Graphs
    De Luca, Felice
    Di Giacomo, Emilio
    Hong, Seok-Hee
    Kobourov, Stephen
    Lenhart, William
    Liotta, Giuseppe
    Meijer, Henk
    Tappini, Alessandra
    Wismath, Stephen
    WALCOM: ALGORITHMS AND COMPUTATION (WALCOM 2020), 2020, 12049 : 81 - 93
  • [24] Packing trees into 1-planar graphs
    De Luca F.
    Di Giacomo E.
    Hong S.-H.
    Kobourov S.
    Lenhart W.
    Liotta G.
    Meijer H.
    Tappini A.
    Wismath S.
    Journal of Graph Algorithms and Applications, 2021, 25 (02) : 605 - 624
  • [25] On RAC drawings of 1-planar graphs
    Bekos, Michael A.
    Didimo, Walter
    Liotta, Giuseppe
    Mehrabi, Saeed
    Montecchiani, Fabrizio
    THEORETICAL COMPUTER SCIENCE, 2017, 689 : 48 - 57
  • [26] On drawings and decompositions of 1-planar graphs
    Czap, Julius
    Hudak, David
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (02):
  • [27] The stub resolution of 1-planar graphs
    Kaufmann, Michael
    Kratochvíl, Jan
    Lipp, Fabian
    Montecchiani, Fabrizio
    Raftopoulou, Chrysanthi
    Valtr, Pavel
    Journal of Graph Algorithms and Applications, 2021, 25 (02) : 625 - 642
  • [28] Cops and Robbers on 1-Planar Graphs
    Durocher, Stephane
    Kamali, Shahin
    Kryven, Myroslav
    Liu, Fengyi
    Mashghdoust, Amirhossein
    Miller, Avery
    Nezhad, Pouria Zamani
    Costa, Ikaro Penha
    Zapp, Timothy
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2023, PT II, 2023, 14466 : 3 - 17
  • [29] On the Equitable Edge-Coloring of 1-Planar Graphs and Planar Graphs
    Hu, Dai-Qiang
    Wu, Jian-Liang
    Yang, Donglei
    Zhang, Xin
    GRAPHS AND COMBINATORICS, 2017, 33 (04) : 945 - 953
  • [30] On the Equitable Edge-Coloring of 1-Planar Graphs and Planar Graphs
    Dai-Qiang Hu
    Jian-Liang Wu
    Donglei Yang
    Xin Zhang
    Graphs and Combinatorics, 2017, 33 : 945 - 953