Joins of 1-Planar Graphs

被引:6
|
作者
Czap, Julius [1 ]
Hudak, David [2 ]
Madaras, Tomas [3 ]
机构
[1] Tech Univ Kosice, Fac Econ, Dept Appl Math & Business Informat, Kosice 04001, Slovakia
[2] VSL Software As, Kosice 04001, Slovakia
[3] Pavol Jozef Safarik Univ, Fac Sci, Inst Math, Kosice 04001, Slovakia
关键词
1-Planar graph; join product;
D O I
10.1007/s10114-014-4017-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph is called 1-planar if it admits a drawing in the plane such that each edge is crossed at most once. In this paper, we study 1-planar graph joins. We prove that the join G + H is 1-planar if and only if the pair [G, H] is subgraph-majorized by one of pairs [C-3 boolean OR C-3, C-3], [C-4, C-4], [C-4, C-3], [K-2,K-1,K-1, P-3] in the case when both elements of the graph join have at least three vertices. If one element has at most two vertices, then we give several necessary/sufficient conditions for the bigger element.
引用
收藏
页码:1867 / 1876
页数:10
相关论文
共 50 条
  • [31] On list (p, 1)-total labellings of special planar graphs and 1-planar graphs
    Lin Sun
    Guanglong Yu
    Jianliang Wu
    Journal of Combinatorial Optimization, 2024, 47
  • [32] The Matching Extendability of Optimal 1-Planar Graphs
    Fujisawa, Jun
    Segawa, Keita
    Suzuki, Yusuke
    GRAPHS AND COMBINATORICS, 2018, 34 (05) : 1089 - 1099
  • [33] The Book Thickness of 1-Planar Graphs is Constant
    Bekos, Michael A.
    Bruckdorfer, Till
    Kaufmann, Michael
    Raftopoulou, Chrysanthi N.
    ALGORITHMICA, 2017, 79 (02) : 444 - 465
  • [34] A note on the surviving rate of 1-planar graphs
    Kong, Jiangxu
    Zhang, Lianzhu
    DISCRETE MATHEMATICS, 2017, 340 (05) : 1074 - 1079
  • [35] On list (p, 1)-total labellings of special planar graphs and 1-planar graphs
    Sun, Lin
    Yu, Guanglong
    Wu, Jianliang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 47 (03)
  • [36] A note on total colorings of 1-planar graphs
    Czap, Julius
    INFORMATION PROCESSING LETTERS, 2013, 113 (14-16) : 516 - 517
  • [37] Improvements on the density of maximal 1-planar graphs
    Barat, Janos
    Toth, Geza
    JOURNAL OF GRAPH THEORY, 2018, 88 (01) : 101 - 109
  • [38] Dynamic list coloring of 1-planar graphs
    Zhang, Xin
    Li, Yan
    DISCRETE MATHEMATICS, 2021, 344 (05)
  • [39] A note on odd colorings of 1-planar graphs
    Cranston, Daniel W.
    Lafferty, Michael
    Song, Zi-Xia
    DISCRETE APPLIED MATHEMATICS, 2023, 330 : 112 - 117
  • [40] Note on improper coloring of 1-planar graphs
    Yanan Chu
    Lei Sun
    Jun Yue
    Czechoslovak Mathematical Journal, 2019, 69 : 955 - 968