Outer 1-Planar Graphs

被引:0
|
作者
Christopher Auer
Christian Bachmaier
Franz J. Brandenburg
Andreas Gleißner
Kathrin Hanauer
Daniel Neuwirth
Josef Reislhuber
机构
[1] University of Passau,
来源
Algorithmica | 2016年 / 74卷
关键词
Planar and outerplanar graphs; 1-Planarity; Embeddings and drawings; Graph parameters; Density;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is outer 1-planar (o1p) if it can be drawn in the plane such that all vertices are in the outer face and each edge is crossed at most once. o1p graphs generalize outerplanar graphs, which can be recognized in linear time, and specialize 1-planar graphs, whose recognition is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${NP}$$\end{document}-hard. We explore o1p graphs. Our first main result is a linear-time algorithm that takes a graph as input and returns a positive or a negative witness for o1p. If a graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is o1p, then the algorithm computes an embedding and can augment G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} to a maximal o1p graph. Otherwise, G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} includes one of six minors, which is detected by the recognition algorithm. Secondly, we establish structural properties of o1p graphs. o1p graphs are planar and are subgraphs of planar graphs with a Hamiltonian cycle. They are neither closed under edge contraction nor under subdivision. Several important graph parameters, such as treewidth, colorability, stack number, and queue number, increase by one from outerplanar to o1p graphs. Every o1p graph of size n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} has at most 52n-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{5}{2} n - 4$$\end{document} edges and there are maximal o1p graphs with 115n-185\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{11}{5} n - \frac{18}{5}$$\end{document} edges, and these bounds are tight. Finally, every o1p graph has a straight-line grid drawing in O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(n^2)$$\end{document} area with all vertices in the outer face, a planar visibility representation in O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(n \log n)$$\end{document} area, and a 3D straight-line drawing in linear volume, and these drawings can be constructed in linear time.
引用
收藏
页码:1293 / 1320
页数:27
相关论文
共 50 条
  • [1] Outer 1-Planar Graphs
    Auer, Christopher
    Bachmaier, Christian
    Brandenburg, Franz J.
    Gleissner, Andreas
    Hanauer, Kathrin
    Neuwirth, Daniel
    Reislhuber, Josef
    ALGORITHMICA, 2016, 74 (04) : 1293 - 1320
  • [2] Correction to: Outer 1-Planar Graphs
    Christopher Auer
    Christian Bachmaier
    Franz J. Brandenburg
    Andreas Gleißner
    Kathrin Hanauer
    Daniel Neuwirth
    Josef Reislhuber
    Algorithmica, 2021, 83 (11) : 3534 - 3535
  • [3] Drawing Outer 1-planar Graphs with Few Slopes
    Di Giacomo, Emilio
    Liotta, Giuseppe
    Montecchiani, Fabrizio
    GRAPH DRAWING (GD 2014), 2014, 8871 : 174 - 185
  • [4] Outer 1-Planar Graphs (vol 74, pg 1293, 2016)
    Auer, Christopher
    Bachmaier, Christian
    Brandenburg, Franz J.
    Gleissner, Andreas
    Hanauer, Kathrin
    Neuwirth, Daniel
    Reislhuber, Josef
    ALGORITHMICA, 2021, 83 (11) : 3534 - 3535
  • [5] Adjacent vertex distinguishing total colorings of outer 1-planar graphs *
    Chen, Qin
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 108 : 221 - 230
  • [6] Joins of 1-Planar Graphs
    Július CZAP
    Dvid HUDK
    Tom MADARAS
    Acta Mathematica Sinica,English Series, 2014, 30 (11) : 1867 - 1876
  • [7] Joins of 1-planar graphs
    Július Czap
    Dávid Hudák
    Tomáš Madaras
    Acta Mathematica Sinica, English Series, 2014, 30 : 1867 - 1876
  • [8] On the Pagenumber of 1-Planar Graphs
    Xiaxia Guan
    Weihua Yang
    Chinese Annals of Mathematics, Series B, 2025, 46 (2) : 287 - 302
  • [9] A note on 1-planar graphs
    Ackerman, Eyal
    DISCRETE APPLIED MATHEMATICS, 2014, 175 : 104 - 108
  • [10] On the Pagenumber of 1-Planar Graphs
    Xiaxia GUAN
    Weihua YANG
    Chinese Annals of Mathematics,Series B, 2025, (02) : 287 - 302