Outer 1-Planar Graphs

被引:0
|
作者
Christopher Auer
Christian Bachmaier
Franz J. Brandenburg
Andreas Gleißner
Kathrin Hanauer
Daniel Neuwirth
Josef Reislhuber
机构
[1] University of Passau,
来源
Algorithmica | 2016年 / 74卷
关键词
Planar and outerplanar graphs; 1-Planarity; Embeddings and drawings; Graph parameters; Density;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is outer 1-planar (o1p) if it can be drawn in the plane such that all vertices are in the outer face and each edge is crossed at most once. o1p graphs generalize outerplanar graphs, which can be recognized in linear time, and specialize 1-planar graphs, whose recognition is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${NP}$$\end{document}-hard. We explore o1p graphs. Our first main result is a linear-time algorithm that takes a graph as input and returns a positive or a negative witness for o1p. If a graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is o1p, then the algorithm computes an embedding and can augment G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} to a maximal o1p graph. Otherwise, G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} includes one of six minors, which is detected by the recognition algorithm. Secondly, we establish structural properties of o1p graphs. o1p graphs are planar and are subgraphs of planar graphs with a Hamiltonian cycle. They are neither closed under edge contraction nor under subdivision. Several important graph parameters, such as treewidth, colorability, stack number, and queue number, increase by one from outerplanar to o1p graphs. Every o1p graph of size n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} has at most 52n-4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{5}{2} n - 4$$\end{document} edges and there are maximal o1p graphs with 115n-185\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{11}{5} n - \frac{18}{5}$$\end{document} edges, and these bounds are tight. Finally, every o1p graph has a straight-line grid drawing in O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(n^2)$$\end{document} area with all vertices in the outer face, a planar visibility representation in O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\fancyscript{O}(n \log n)$$\end{document} area, and a 3D straight-line drawing in linear volume, and these drawings can be constructed in linear time.
引用
收藏
页码:1293 / 1320
页数:27
相关论文
共 50 条
  • [31] Cops and Robbers on 1-Planar Graphs
    Durocher, Stephane
    Kamali, Shahin
    Kryven, Myroslav
    Liu, Fengyi
    Mashghdoust, Amirhossein
    Miller, Avery
    Nezhad, Pouria Zamani
    Costa, Ikaro Penha
    Zapp, Timothy
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2023, PT II, 2023, 14466 : 3 - 17
  • [32] On the Equitable Edge-Coloring of 1-Planar Graphs and Planar Graphs
    Hu, Dai-Qiang
    Wu, Jian-Liang
    Yang, Donglei
    Zhang, Xin
    GRAPHS AND COMBINATORICS, 2017, 33 (04) : 945 - 953
  • [33] On the Equitable Edge-Coloring of 1-Planar Graphs and Planar Graphs
    Dai-Qiang Hu
    Jian-Liang Wu
    Donglei Yang
    Xin Zhang
    Graphs and Combinatorics, 2017, 33 : 945 - 953
  • [34] On list (p, 1)-total labellings of special planar graphs and 1-planar graphs
    Lin Sun
    Guanglong Yu
    Jianliang Wu
    Journal of Combinatorial Optimization, 2024, 47
  • [35] The Matching Extendability of Optimal 1-Planar Graphs
    Fujisawa, Jun
    Segawa, Keita
    Suzuki, Yusuke
    GRAPHS AND COMBINATORICS, 2018, 34 (05) : 1089 - 1099
  • [36] The Book Thickness of 1-Planar Graphs is Constant
    Bekos, Michael A.
    Bruckdorfer, Till
    Kaufmann, Michael
    Raftopoulou, Chrysanthi N.
    ALGORITHMICA, 2017, 79 (02) : 444 - 465
  • [37] A note on the surviving rate of 1-planar graphs
    Kong, Jiangxu
    Zhang, Lianzhu
    DISCRETE MATHEMATICS, 2017, 340 (05) : 1074 - 1079
  • [38] On list (p, 1)-total labellings of special planar graphs and 1-planar graphs
    Sun, Lin
    Yu, Guanglong
    Wu, Jianliang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 47 (03)
  • [39] A note on total colorings of 1-planar graphs
    Czap, Julius
    INFORMATION PROCESSING LETTERS, 2013, 113 (14-16) : 516 - 517
  • [40] Improvements on the density of maximal 1-planar graphs
    Barat, Janos
    Toth, Geza
    JOURNAL OF GRAPH THEORY, 2018, 88 (01) : 101 - 109