SOME CHEBYSHEV TYPE INEQUALITIES FOR GENERALIZED RIEMANN-LIOUVILLE OPERATOR

被引:0
|
作者
Halim, B. [1 ]
Senouci, A. [1 ]
Sofrani, M. [1 ]
机构
[1] Univ Tiaret, BP P 78 Zaaroura, Tiaret 14000, Algeria
来源
UFA MATHEMATICAL JOURNAL | 2020年 / 12卷 / 02期
关键词
Chebyshev functional; Integral Inequalities; RL-fractional operator;
D O I
10.13108/2020-12-2-88
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we are interested in the famous inequality introduced by Chebyshev. This inequality has several generalizations and applications in different fields of mathematics and others. In particular it is important for us the applications of fractional calculus for the different integral Chebyshev type inequalities. We establish and prove some theorems and corollaries relating to fractional integral, by applying more general fractional integral operator than Riemann-Liouville one: K-u,v(alpha,beta) = v(x)/Gamma(alpha) integral(x)(0) (x - t)(alpha-1) [ln(x/t)](beta-1) f(t)u(t)dt, x > 0 where alpha > 0, beta >= 1, u and v locally integrable non-negative weight functions, Gamma is the Euler Gamma-function. First, fractional integral Chebyshev type inequalities are obtained for operator K-u,v(alpha,beta) with two synchronous or two asynchronous functions and by induction for several functions. Second, we consider an extended Chebyshev functional T(g, g, p, q) := integral(b)(a) q(x)dx integral(b)(a) p(x)f(x)g(x)dx + integral(b)(a) p(x)dx integral(b)(a) q(x)f(x)g(x)dx -(integral(b)(a) q(x)f(x)dx) (integral(b)(a) p(x)g(x)dx) -(integral(b)(a) p(x)f(x)dx) (integral(b)(a) q(x)g(x)dx) where p, q are positive integrable weight functions on [a,b]. In this case fractional integral weighted inequalities are established for two fractional integral operators K-u1,v1(alpha 1,beta 1) and K-u2,v2(alpha 2,beta 2), with two synchronous or asynchronous functions, where alpha(1) not equal alpha(2), beta(1) not equal beta(2) and u(1) not equal u(2), v(1) not equal v(2). In addition, a fractional integral H<spacing diaeresis>older type inequality for several functions is established using the operator K-u,v(alpha,beta). At the end, another fractional integral Chebyshev type inequality is given for increasing function f and differentiable function g.
引用
收藏
页码:88 / 96
页数:9
相关论文
共 50 条
  • [41] Montgomery Identity and Ostrowski Type Inequalities for Riemann-Liouville Fractional Integral
    Aljinovic, Andrea Aglic
    JOURNAL OF MATHEMATICS, 2014, 2014
  • [42] Extension of the fractional derivative operator of the Riemann-Liouville
    Baleanu, Dumitru
    Agarwal, Praveen
    Parmar, Rakesh K.
    Alqurashi, Maysaa M.
    Salahshour, Soheil
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (06): : 2914 - 2924
  • [43] Characterization of the Volterra operator and the Riemann-Liouville semigroup
    Kantorovitz S.
    Acta Scientiarum Mathematicarum, 2014, 80 (3-4): : 459 - 466
  • [44] Some boundedness results for Ψ-Riemann-Liouville and Ψ-Riemann-Liouville tempered fractional integrals in R
    Ledesma, Cesar E. Torres
    Rodriguez, Jesus A.
    Zuniga, Felipe A.
    ADVANCES IN OPERATOR THEORY, 2024, 9 (02)
  • [45] Convergence in Law to Operator Fractional Brownian Motion of Riemann-Liouville Type
    Hong Shuai DAI
    Acta Mathematica Sinica, 2013, 29 (04) : 777 - 788
  • [46] Convergence in Law to Operator Fractional Brownian Motion of Riemann-Liouville Type
    Hong Shuai DAI
    Acta Mathematica Sinica,English Series, 2013, (04) : 777 - 788
  • [47] Convergence in law to operator fractional Brownian motion of Riemann-Liouville type
    Hong Shuai Dai
    Acta Mathematica Sinica, English Series, 2013, 29 : 777 - 788
  • [48] Further Midpoint Inequalities via Generalized Fractional Operators in Riemann-Liouville Sense
    Hyder, Abd-Allah
    Budak, Huseyin
    Almoneef, Areej A.
    FRACTAL AND FRACTIONAL, 2022, 6 (09)
  • [49] ON POLYA-SZEGO AND CHEBYSHEV TYPES INEQUALITIES INVOLVING THE RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATORS
    Ntouyas, Sotiris K.
    Agarwal, Praveen
    Tariboon, Jessada
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (02): : 491 - 504
  • [50] Convergence in law to operator fractional Brownian motion of Riemann-Liouville type
    Dai, Hong Shuai
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (04) : 777 - 788