SOME CHEBYSHEV TYPE INEQUALITIES FOR GENERALIZED RIEMANN-LIOUVILLE OPERATOR

被引:0
|
作者
Halim, B. [1 ]
Senouci, A. [1 ]
Sofrani, M. [1 ]
机构
[1] Univ Tiaret, BP P 78 Zaaroura, Tiaret 14000, Algeria
来源
UFA MATHEMATICAL JOURNAL | 2020年 / 12卷 / 02期
关键词
Chebyshev functional; Integral Inequalities; RL-fractional operator;
D O I
10.13108/2020-12-2-88
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we are interested in the famous inequality introduced by Chebyshev. This inequality has several generalizations and applications in different fields of mathematics and others. In particular it is important for us the applications of fractional calculus for the different integral Chebyshev type inequalities. We establish and prove some theorems and corollaries relating to fractional integral, by applying more general fractional integral operator than Riemann-Liouville one: K-u,v(alpha,beta) = v(x)/Gamma(alpha) integral(x)(0) (x - t)(alpha-1) [ln(x/t)](beta-1) f(t)u(t)dt, x > 0 where alpha > 0, beta >= 1, u and v locally integrable non-negative weight functions, Gamma is the Euler Gamma-function. First, fractional integral Chebyshev type inequalities are obtained for operator K-u,v(alpha,beta) with two synchronous or two asynchronous functions and by induction for several functions. Second, we consider an extended Chebyshev functional T(g, g, p, q) := integral(b)(a) q(x)dx integral(b)(a) p(x)f(x)g(x)dx + integral(b)(a) p(x)dx integral(b)(a) q(x)f(x)g(x)dx -(integral(b)(a) q(x)f(x)dx) (integral(b)(a) p(x)g(x)dx) -(integral(b)(a) p(x)f(x)dx) (integral(b)(a) q(x)g(x)dx) where p, q are positive integrable weight functions on [a,b]. In this case fractional integral weighted inequalities are established for two fractional integral operators K-u1,v1(alpha 1,beta 1) and K-u2,v2(alpha 2,beta 2), with two synchronous or asynchronous functions, where alpha(1) not equal alpha(2), beta(1) not equal beta(2) and u(1) not equal u(2), v(1) not equal v(2). In addition, a fractional integral H<spacing diaeresis>older type inequality for several functions is established using the operator K-u,v(alpha,beta). At the end, another fractional integral Chebyshev type inequality is given for increasing function f and differentiable function g.
引用
收藏
页码:88 / 96
页数:9
相关论文
共 50 条
  • [21] Generalized homogeneous Besov spaces associated with the Riemann-Liouville operator
    Hamadi, N. B.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (02)
  • [22] Trapezoid type inequalities for generalized Riemann-Liouville fractional integrals of functions with bounded variation
    Dragomir, Silvestru Sever
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2020, 12 (01) : 30 - 53
  • [23] Gruss type integral inequalities for generalized Riemann-Liouville k-fractional integrals
    Mubeen, Shahid
    Iqbal, Sana
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [24] GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS
    Mihai, Marcela V.
    Ion, Daniel Alexandru
    TAMKANG JOURNAL OF MATHEMATICS, 2014, 45 (02): : 207 - 215
  • [25] Inequalities for generalized Riemann-Liouville fractional integrals of generalized strongly convex functions
    Farid, Ghulam
    Kwun, Young Chel
    Yasmeen, Hafsa
    Akkurt, Abdullah
    Kang, Shin Min
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [26] Some Riemann-Liouville fractional integral inequalities for convex functions
    Farid, Ghulam
    JOURNAL OF ANALYSIS, 2019, 27 (04): : 1095 - 1102
  • [27] Some Riemann-Liouville fractional integral inequalities of corrected Euler-Maclaurin-type
    Hezenci, Fatih
    Budak, Hueseyin
    JOURNAL OF ANALYSIS, 2024, 32 (03): : 1309 - 1330
  • [28] SOME HERMITE-HADAMARD TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS
    Mihai, Marcela V.
    TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (04): : 411 - 416
  • [29] New integral inequalities involving generalized Riemann-Liouville fractional operators
    Delgado, Juan Gabriel Galeano
    Valdes, Juan E. Napoles
    Reyes, Edgardo Perez
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (03): : 481 - 487