GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

被引:1
|
作者
Mihai, Marcela V. [1 ]
Ion, Daniel Alexandru [1 ]
机构
[1] Univ Craiova, Dept Math, St AI Cuza 13, RO-200585 Craiova, Romania
来源
TAMKANG JOURNAL OF MATHEMATICS | 2014年 / 45卷 / 02期
关键词
Convex function; Hermite-Hadamard inequality; Riemann-Liouville fractional integrals;
D O I
10.5556/j.tkjm.45.2014.1545
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some Hermite-Hadamard type inequalities are provided. We deal with functions whose derivatives in absolute value are convex or concave. By defining two cumulative gaps which enable us to generalize known results in the framework of Riemann Liouville fractional calculus, we open a new perspective on the classic statement of the inequality.
引用
收藏
页码:207 / 215
页数:9
相关论文
共 50 条
  • [1] Some inequalities via ψ-Riemann-Liouville fractional integrals
    Mehreen, Naila
    Anwar, Matloob
    [J]. AIMS MATHEMATICS, 2019, 4 (05): : 1403 - 1415
  • [2] SOME HERMITE-HADAMARD TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS
    Mihai, Marcela V.
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (04): : 411 - 416
  • [3] Some results on integral inequalities via Riemann-Liouville fractional integrals
    Li, Xiaoling
    Qaisar, Shahid
    Nasir, Jamshed
    Butt, Saad Ihsan
    Ahmad, Farooq
    Bari, Mehwish
    Farooq, Shan E.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [4] On the Riemann-Liouville fractional calculus and some recent applications
    Nonnenmacher, TF
    Metzler, R
    [J]. FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (03): : 557 - 566
  • [5] HERMITE-HADAMARD TYPE INEQUALITIES OBTAINED VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS
    Mihai, M. V.
    Mitroi, F-C.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2014, 83 (02): : 209 - 215
  • [6] On New Inequalities via Riemann-Liouville Fractional Integration
    Sarikaya, Mehmet Zeki
    Ogunmez, Hasan
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [7] Random inequalities via Riemann-Liouville fractional integration
    Bezziou, Mohamed
    Dahmani, Zoubir
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (04) : 941 - 950
  • [8] Some new inequalities for convex functions via Riemann-Liouville fractional integrals
    Gurbuz, Mustafa
    Yildiz, Cetin
    [J]. APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2021, 6 (01) : 537 - 544
  • [9] NEW INEQUALITIES FOR CO-ORDINATED CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS
    Mihai, Marcela V.
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2014, 45 (03): : 285 - 296
  • [10] On Some Generalized Integral Inequalities for Riemann-Liouville Fractional Integrals
    Sarikaya, Mehmet Zeki
    Filiz, Hatice
    Kiris, Mehmet Eyup
    [J]. FILOMAT, 2015, 29 (06) : 1307 - 1314