GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

被引:1
|
作者
Mihai, Marcela V. [1 ]
Ion, Daniel Alexandru [1 ]
机构
[1] Univ Craiova, Dept Math, St AI Cuza 13, RO-200585 Craiova, Romania
来源
TAMKANG JOURNAL OF MATHEMATICS | 2014年 / 45卷 / 02期
关键词
Convex function; Hermite-Hadamard inequality; Riemann-Liouville fractional integrals;
D O I
10.5556/j.tkjm.45.2014.1545
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some Hermite-Hadamard type inequalities are provided. We deal with functions whose derivatives in absolute value are convex or concave. By defining two cumulative gaps which enable us to generalize known results in the framework of Riemann Liouville fractional calculus, we open a new perspective on the classic statement of the inequality.
引用
收藏
页码:207 / 215
页数:9
相关论文
共 50 条
  • [41] Some Riemann-Liouville fractional integral inequalities of corrected Euler-Maclaurin-type
    Hezenci, Fatih
    Budak, Hueseyin
    JOURNAL OF ANALYSIS, 2024, 32 (03): : 1309 - 1330
  • [42] On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals
    Zhang, Yuruo
    Wang, JinRong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [43] On a General Formulation of the Riemann-Liouville Fractional Operator and Related Inequalities
    Delgado, Juan Gabriel Galeano
    Valdes, Juan Eduardo Napoles
    Reyes, Edgardo Enrique Perez
    MATHEMATICS, 2023, 11 (16)
  • [44] Generalized inequalities involving fractional operators of the Riemann-Liouville type
    Bosch, Paul
    Carmenate, Hector J.
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    AIMS MATHEMATICS, 2022, 7 (01): : 1470 - 1485
  • [46] Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings
    Khan, Muhammad Bilal
    Treanta, Savin
    Alrweili, Hleil
    Saeed, Tareq
    Soliman, Mohamed S.
    AIMS MATHEMATICS, 2022, 7 (08): : 15659 - 15679
  • [47] On new inequalities for h-convex functions via Riemann-Liouville fractional integration
    Tunc, Mevlut
    FILOMAT, 2013, 27 (04) : 559 - 565
  • [48] NEW INTEGRAL INEQUALITIES OF FENG QI TYPE VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRATION
    Anber, Ahmed
    Dahmani, Zoubir
    Bendoukha, Berrabah
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2012, 27 (02): : 157 - 166
  • [49] RIEMANN-LIOUVILLE FRACTIONAL FUNDAMENTAL THEOREM OF CALCULUS AND RIEMANN-LIOUVILLE FRACTIONAL POLYA TYPE INTEGRAL INEQUALITY AND ITS EXTENSION TO CHOQUET INTEGRAL SETTING
    Anastassiou, George A.
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (06) : 1423 - 1433
  • [50] The Solutions of Some Riemann-Liouville Fractional Integral Equations
    Kaewnimit, Karuna
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Orankitjaroen, Somsak
    FRACTAL AND FRACTIONAL, 2021, 5 (04)