Conical quantum billiard

被引:2
|
作者
Liboff, RL
机构
[1] CORNELL UNIV,SCH APPL PHYS,ITHACA,NY 14853
[2] CORNELL UNIV,CTR APPL MATH,ITHACA,NY 14853
关键词
Helmholtz equation; quantum billiard; conical section; associated Legendre polynomials; first excited state; nodal; degeneracy;
D O I
10.1023/A:1007470206508
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The conical quantum billiard is examined. Wavefunctions are obtained in an open domain which excludes the polar axis, involving associated Legendre functions of the first and second kind. The first excited state is three-fold degenerate. One wavefunction is nonnodal. The nodal surface of either of the other states is a bisecting plane which includes the axis of the cone. These nodal properties maintain for 0 < theta(0) less than or equal to pi/2, where theta(0) is the half vertex angle of the cone. At theta(0) > pi/2, the nonnodal state acquires a nodal at theta = pi/2. Thus, as with the image problem in two dimensions, there is critical vertex angle about which the nodal structure of one of the eigenstates suffers a topological change. This nodal transition is accompanied by a geometrical transformation of the cone from convex to concave. Solutions obtained are valid for all conical quantum billiards to the limit of the spherical quantum billiard excluding the polar axis.
引用
收藏
页码:389 / 391
页数:3
相关论文
共 50 条
  • [41] Classical system underlying a diffracting quantum billiard
    Manan Jain
    Pramana, 2018, 90
  • [42] Interaction effects in a chaotic graphene quantum billiard
    Hagymasi, Imre
    Vancso, Peter
    Palinkas, Andras
    Osvath, Zoltan
    PHYSICAL REVIEW B, 2017, 95 (07)
  • [43] Quantum conical designs
    Graydon, Matthew A.
    Appleby, D. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (08)
  • [44] Chaotic Bohm's trajectories in a quantum circular billiard
    Bonfim, OFD
    Florencio, J
    Barreto, FCS
    PHYSICS LETTERS A, 2000, 277 (03) : 129 - 134
  • [45] Quantum spectra and classical periodic orbit in the cubic billiard
    王德华
    于永江
    林圣路
    ChineseOpticsLetters, 2006, (06) : 311 - 314
  • [46] IMPROVED EIGENVALUE SUMS FOR INFERRING QUANTUM BILLIARD GEOMETRY
    BERRY, MV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (09): : 2389 - 2403
  • [47] Circular quantum billiard with a singular magnetic flux line
    Reimann, S.M.
    Brack, M.
    Magner, A.G.
    Blaschke, J.
    Murthy, M.V.N.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1996, 53 (01):
  • [48] Classical and quantum chaos in a circular billiard with a straight cut
    Ree, S
    Reichl, LE
    PHYSICAL REVIEW E, 1999, 60 (02): : 1607 - 1615
  • [49] A quantum theory for the excitation spectrum of a rectangular Andreev billiard
    Espinoza Ortiz, J. S.
    Lagos, R. E.
    Belich, H.
    Amorim, L. S.
    Eleuterio, F. H. S.
    Orlando, M. T. D.
    3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2014), 2015, 574
  • [50] Numerical verification of Percival's conjecture in a quantum billiard
    Carlo, G
    Vergini, E
    Fendrik, AJ
    PHYSICAL REVIEW E, 1998, 57 (05): : 5397 - 5403