Conical quantum billiard

被引:2
|
作者
Liboff, RL
机构
[1] CORNELL UNIV,SCH APPL PHYS,ITHACA,NY 14853
[2] CORNELL UNIV,CTR APPL MATH,ITHACA,NY 14853
关键词
Helmholtz equation; quantum billiard; conical section; associated Legendre polynomials; first excited state; nodal; degeneracy;
D O I
10.1023/A:1007470206508
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The conical quantum billiard is examined. Wavefunctions are obtained in an open domain which excludes the polar axis, involving associated Legendre functions of the first and second kind. The first excited state is three-fold degenerate. One wavefunction is nonnodal. The nodal surface of either of the other states is a bisecting plane which includes the axis of the cone. These nodal properties maintain for 0 < theta(0) less than or equal to pi/2, where theta(0) is the half vertex angle of the cone. At theta(0) > pi/2, the nonnodal state acquires a nodal at theta = pi/2. Thus, as with the image problem in two dimensions, there is critical vertex angle about which the nodal structure of one of the eigenstates suffers a topological change. This nodal transition is accompanied by a geometrical transformation of the cone from convex to concave. Solutions obtained are valid for all conical quantum billiards to the limit of the spherical quantum billiard excluding the polar axis.
引用
收藏
页码:389 / 391
页数:3
相关论文
共 50 条
  • [31] Electromagnetic scattering in the open elliptic quantum billiard
    Garcia-Garcia, Hipolito
    Gutierrez-Vega, Julio C.
    REFLECTION, SCATTERING, AND DIFFRACTION FROM SURFACES III, 2012, 8495
  • [32] Diffractive effect of quantum spectra in the annular billiard
    Zhang Ji-Quan
    Zhang Yan-Hui
    Zhou Hui
    Jia Zheng-Mao
    Lin Sheng-Lu
    ACTA PHYSICA SINICA, 2009, 58 (09) : 5965 - 5969
  • [33] Tunneling phenomena in the open elliptic quantum billiard
    Garcia-Gracia, Hipolito
    Gutierrez-Vega, Julio C.
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [35] Graphene quantum dots: Beyond a Dirac billiard
    Libisch, Florian
    Stampfer, Christoph
    Burgdorfer, Joachim
    PHYSICAL REVIEW B, 2009, 79 (11):
  • [36] Constraint operator solution to quantum billiard problems
    McGrew, DA
    Bauer, W
    PHYSICAL REVIEW E, 1996, 54 (05): : 5809 - 5818
  • [37] Time-dependent quantum circular billiard
    Babajanov, D. B.
    Matrasulov, D. U.
    Sobirov, Z. A.
    Avazbaev, S. K.
    Karpova, O. V.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2015, 6 (02): : 224 - 243
  • [38] Adiabatic quantization of Andreev quantum billiard levels
    Silvestrov, PG
    Goorden, MC
    Beenakker, CWJ
    PHYSICAL REVIEW LETTERS, 2003, 90 (11) : 1 - 116801
  • [39] Quantum chaos in optical systems: The annular billiard
    Hentschel, M
    Richter, K
    PHYSICAL REVIEW E, 2002, 66 (05): : 13 - 056207
  • [40] Normalization of states for a quantum magnetic circular billiard
    de Prunele, E.
    PHYSICAL REVIEW A, 2009, 79 (04):