Conical quantum billiard

被引:2
|
作者
Liboff, RL
机构
[1] CORNELL UNIV,SCH APPL PHYS,ITHACA,NY 14853
[2] CORNELL UNIV,CTR APPL MATH,ITHACA,NY 14853
关键词
Helmholtz equation; quantum billiard; conical section; associated Legendre polynomials; first excited state; nodal; degeneracy;
D O I
10.1023/A:1007470206508
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The conical quantum billiard is examined. Wavefunctions are obtained in an open domain which excludes the polar axis, involving associated Legendre functions of the first and second kind. The first excited state is three-fold degenerate. One wavefunction is nonnodal. The nodal surface of either of the other states is a bisecting plane which includes the axis of the cone. These nodal properties maintain for 0 < theta(0) less than or equal to pi/2, where theta(0) is the half vertex angle of the cone. At theta(0) > pi/2, the nonnodal state acquires a nodal at theta = pi/2. Thus, as with the image problem in two dimensions, there is critical vertex angle about which the nodal structure of one of the eigenstates suffers a topological change. This nodal transition is accompanied by a geometrical transformation of the cone from convex to concave. Solutions obtained are valid for all conical quantum billiards to the limit of the spherical quantum billiard excluding the polar axis.
引用
收藏
页码:389 / 391
页数:3
相关论文
共 50 条
  • [21] Sensitivity to perturbations in a quantum chaotic billiard
    Wisniacki, DA
    Vergini, EG
    Pastawski, HM
    Cucchietti, FM
    PHYSICAL REVIEW E, 2002, 65 (05):
  • [22] REDUCING THE TRIANGULAR QUANTUM BILLIARD PROBLEM
    GAUDIN, M
    JOURNAL DE PHYSIQUE, 1986, 47 (04): : 581 - 594
  • [23] WAVE CHAOS IN SINGULAR QUANTUM BILLIARD
    SEBA, P
    PHYSICAL REVIEW LETTERS, 1990, 64 (16) : 1855 - 1858
  • [24] Sensitivity to perturbations in a quantum chaotic billiard
    Wisniacki, Diego A.
    Vergini, Eduardo G.
    Pastawski, Horacio M.
    Cucchietti, Fernando M.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (05): : 1 - 055206
  • [25] Multifractal Eigenfunctions for a Singular Quantum Billiard
    Keating, Jonathan P.
    Ueberschar, Henrik
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 389 (01) : 543 - 569
  • [26] Quantum chaos for the radially vibrating spherical billiard
    Liboff, RL
    Porter, MA
    CHAOS, 2000, 10 (02) : 366 - 370
  • [27] Scattering properties of a cut-circle billiard waveguide with two conical leads
    Fuchss, K
    Ree, S
    Reichl, LE
    PHYSICAL REVIEW E, 2001, 63 (01):
  • [28] Classical system underlying a diffracting quantum billiard
    Jain, Manan
    PRAMANA-JOURNAL OF PHYSICS, 2018, 90 (02):
  • [29] THE ROTATING ELLIPTIC BILLIARD AND A SIGNATURE OF QUANTUM CHAOS
    TRAIBER, AJS
    FENDRIK, AJ
    BERNATH, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (07): : L305 - L309
  • [30] Chaotic dirac billiard in graphene quantum dots
    Ponomarenko, L. A.
    Schedin, F.
    Katsnelson, M. I.
    Yang, R.
    Hill, E. W.
    Novoselov, K. S.
    Geim, A. K.
    SCIENCE, 2008, 320 (5874) : 356 - 358